The trajectory tracking control problem for underactuated unmanned surface vehicles(USV) was addressed, and the control system took account of the uncertain influences induced by model perturbation, external disturban...The trajectory tracking control problem for underactuated unmanned surface vehicles(USV) was addressed, and the control system took account of the uncertain influences induced by model perturbation, external disturbance, etc. By introducing the reference, trajectory was generated by a virtual USV, and the error equation of trajectory tracking for USV was obtained, which transformed the tracking problem of underactuated USV into the stabilization problem of the trajectory tracking error equation. A backstepping adaptive sliding mode controller was proposed based on backstepping technology and method of dynamic slide model control. By means of theoretical analysis, it is proved that the proposed controller ensures that the solutions of closed loop system have the ultimate boundedness property. Simulation results are presented to illustrate the effectiveness of the proposed controller.展开更多
The stabilization and trajectory tracking problems of autonomous airship's planar motion are studied. By defining novel configuration error and velocity error, the dynamics of error systems are derived. By applying L...The stabilization and trajectory tracking problems of autonomous airship's planar motion are studied. By defining novel configuration error and velocity error, the dynamics of error systems are derived. By applying Lyapunov stability method, the state feedback control laws are designed and the close-loop error systems are proved to be uniformly asymptotically stable by Matrosov theorem. In particular, the controller does not need knowledge on system parameters in the case of set-point stabilization, which makes the controller robust with respect to parameter uncertainty. Numerical simulations illustrate the effectiveness of the controller designed.展开更多
Autonomous underwater vehicles (AUVs) navigating in complex sea conditions usually require a strong control system to keep the fastness and stability. The nonlinear trajectory tracking control system of a new AUV in c...Autonomous underwater vehicles (AUVs) navigating in complex sea conditions usually require a strong control system to keep the fastness and stability. The nonlinear trajectory tracking control system of a new AUV in complex sea conditions was presented. According to the theory of submarines,the six-DOF kinematic and dynamic models were decomposed into two mutually non-coupled vertical and horizontal plane subsystems. Then,different sliding mode control algorithms were used to study the trajectory tracking control. Because the yaw angle and yaw angle rate rather than the displacement of the new AUV can be measured directly on the horizontal plane,the sliding mode control algorithm combining cross track error method and line of sight method was used to fulfill its high-precision trajectory tracking control in the complex sea conditions. As the vertical displacement of the new AUV can be measured,in order to achieve the tracking of time-varying depth signal,a stable sliding mode controller was designed based on the single-input multi-state system,which took into account the characteristic of the hydroplane and the amplitude and rate constraints of the hydroplane angle. Moreover,the application of dynamic boundary layer can improve the robustness and control accuracy of the system. The computational results show that the designed sliding mode control systems of the horizontal and vertical planes can ensure the trajectory tracking performance and accuracy of the new AUV in complex sea conditions. The impacts of currents and waves on the sliding mode controller of the new AUV were analyzed qualitatively and quantitatively by comparing the trajectory tracking performance of the new AUV in different sea conditions,which provides an effective theoretical guidance and technical support for the control system design of the new AUV in real complex environment.展开更多
In recent years,an innovative underactuated robot was developed,named as underactuated cable-driven trusslike manipulator(UCTM),to be suitable in aerospace applications.However,there has been strong consensus that the...In recent years,an innovative underactuated robot was developed,named as underactuated cable-driven trusslike manipulator(UCTM),to be suitable in aerospace applications.However,there has been strong consensus that the stabilization of planar underactuated manipulators without gravity is a great challenge since the system includes a second order nonholonomic constraint and most classical control methods are not suitable for this kind of system.Furthermore,the complexity of the truss-like structure results in tremendous difficulty of computational complicacy and high nonlinearity during dynamic modelling in addition to controller design.It is paramount to solve these difficulties for UCTM's future applications.To solve the above difficulties,this paper presents a dynamic modelling method for UCTM and a trajectory tracking control method based on partial feedback linearization(PFL)that fulfills the control goal of moving UCTM from its original position to a desired position by tracking a given trajectory of the joint angles.To achieve this,a model equivalent method is proposed to make UCTM equivalent with a three-link manipulator in the sense of dynamic behavior.Then the Lagrangian equation combined with complex vector method is proposed in the dynamic modelling process of UCTM,which simplifies the derivation procedure.Based on the established dynamic model,a coordinate transformation method is proposed to transform the control force matrix into the conventional form of an underactuated system,so that the control force can be separated from the unactuated term.The PFL method in combination with the LQR control method is then proposed to realize the targets that the joint angles can track given desired trajectory.Simulation experiments are conducted to verify the correctness and effectiveness of the proposed methods.展开更多
The natural frequency of the electrohydraulic system in mobile machinery is always very low,which brings difficulties to the controller design.To improve the tracking performance of the hydraulic system,mathematical m...The natural frequency of the electrohydraulic system in mobile machinery is always very low,which brings difficulties to the controller design.To improve the tracking performance of the hydraulic system,mathematical modeling of the electrohydraulic lifting system and the rubber hose was accomplished according to an electrohydraulic lifting test rig built in the laboratory.Then,valve compensation strategy,including spool opening compensation (SOC) and dead zone compensation (DZC),was designed based on the flow-pressure characteristic of a closed-centered proportional valve.Comparative experiments on point-to-point trajectory tracking between a proportional controller with the proposed compensations and a traditional PI controller were conducted.Experiment results show that the maximal absolute values of the tracking error are reduced from 0.039 m to 0.019 m for the slow point-to-point motion trajectory and from 0.085 m to 0.054 m for the fast point-to-point motion trajectory with the proposed compensations.Moreover,tracking error of the proposed controller was analyzed and corresponding suggestions to reduce the tracking error were put forward.展开更多
The various uncertainties of Mars environment have great impact on the process of vehicles entering the atmosphere.To improve the robustness of control system against the model errors and to reduce the computational b...The various uncertainties of Mars environment have great impact on the process of vehicles entering the atmosphere.To improve the robustness of control system against the model errors and to reduce the computational burden, an optimal feedback based tracking control law is developed. The control scheme presented in this paper determines the amplitude and the reversals of bank angle respectively in the longitudinal and lateral flight plane. At each control cycle, the amplitude of the bank angle is obtained by an optimal feedback controller to minimize tracking errors. The control gains are tuned according to the closed-loop error dynamics by using optimization methods. The bank reversals are executed if the crossrange exceeds a predetermined corridor which is designed by setting a boundary function. The accuracy and robustness of the proposed closed-loop optimal feedback based control law in tracking the reference trajectory is verified via500 deviation simulations, in which modeling errors and external disturbances are considered.展开更多
This paper proposes an L_(1)adaptive fault tolerant control method for trajectory tracking of tail-sitter aircraft in the state of motor loss fault.The tail-sitter model considers the uncertainties produced by the fea...This paper proposes an L_(1)adaptive fault tolerant control method for trajectory tracking of tail-sitter aircraft in the state of motor loss fault.The tail-sitter model considers the uncertainties produced by the features of nonlinearities and couplings which cause difficulties in control.An L_(1)adaptive controller is designed to reduce the position and attitude error when actuators have faults.A reference trajectory containing large maneuver flight transitions is designed,which makes it even harder for the L_(1)controller to track accurately.Compensators are designed to assist L_(1)adaptive controller tracking of the reference trajectory.The stability of the L_(1)adaptive controller including compensators is proved.Finally,the simulation results are used to analyse the effectiveness of the proposed controller.Compared to the H∞controller,the L_(1)adaptive controller with compensators has better performance in position control and attitude control under fault tolerance state even when the aircraft conducts large maneuver.Besides,as the L_(1)adaptive control method separates feedback control and adaptive law design,the response speed of the whole system is improved.展开更多
The use of a methodology of nonlinear continuous predictive control to design the guidance control law for the aircraft TF/TA2 trajectory tracking problem is emptojed. For the derivation of the predictive control law,...The use of a methodology of nonlinear continuous predictive control to design the guidance control law for the aircraft TF/TA2 trajectory tracking problem is emptojed. For the derivation of the predictive control law, by using Taylor series expansion, and based on optimizing a performance index which is a quadratic function of both the predictive value of the state variables and the control inputs, a state variable feedback controller for nonlinear systems is obtained, and it provides a tradeoff between satisfactory tracking performance and the control magnitude requirements. Numerical simulation results for a supersonic fighter aircraft model show the viability of this approach.展开更多
The trajectory planning and tracking control for an underactuated unmanned surface vessel(USV) were addressed.The reference trajectory was generated by a virtual USV,and the error equation of trajectory tracking for u...The trajectory planning and tracking control for an underactuated unmanned surface vessel(USV) were addressed.The reference trajectory was generated by a virtual USV,and the error equation of trajectory tracking for underactuated USV was obtained,which transformed the tracking and stabilization problem of underactuated USV into the stabilization problem of the trajectory tracking error equation.A nonlinear state feedback controller was proposed based on backstepping technique and Lyapunov's direct method.By means of Lyapunov analysis,it is proved that the proposed controller ensures that the solutions of closed loop system have the ultimate boundedness property.Numerical simulation results are presented to validate the effectiveness and robustness of the proposed controller.展开更多
Coordinated taxiing planning for multiple aircraft on flight deck is of vital importance which can dramatically improve the dispatching efficiency.In this paper,first,the coordinated taxiing path planning problem is t...Coordinated taxiing planning for multiple aircraft on flight deck is of vital importance which can dramatically improve the dispatching efficiency.In this paper,first,the coordinated taxiing path planning problem is transformed into a centralized optimal control problem where collision-free conditions and mechanical limits are considered.Since the formulated optimal control problem is of large state space and highly nonlinear,an efficient hierarchical initialization technique based on the Dubins-curve method is proposed.Then,a model predictive controller is designed to track the obtained reference trajectory in the presence of initial state error and external disturbances.Numerical experiments demonstrate that the proposed“offline planningþonline tracking”framework can achieve efficient and robust coordinated taxiing planning and tracking even in the presence of initial state error and continuous external disturbances.展开更多
This paper addresses the problem of three-dimensional trajectory tracking control for underactuated autonomous underwater vehicles in the presence of parametric uncertainties,environmental disturbances and input satur...This paper addresses the problem of three-dimensional trajectory tracking control for underactuated autonomous underwater vehicles in the presence of parametric uncertainties,environmental disturbances and input saturation.First,a virtual guidance control strategy is established on the basis of tracking error kinematics,which resolves the overall control system into two cascade subsystems.Then,a first-order sliding mode differentiator is introduced in the derivation to avoid tedious analytic calculation,and a Gaussian error function-based continuous differentiable symmetric saturation model is explored to tackle the issue of input saturation.Combined with backstepping design techniques,the neural network control method and an adaptive control approach are used to estimate composite items of the unknown uncertainty and approximation errors.Meanwhile,Lyapunov-based stability analysis guarantees that control error signals of the closed-loop system are uniformly ultimately bounded.Finally,simulation studies are conducted for the trajectory tracking of a moving target and a spiral line to validate the effectiveness of the proposed controller.展开更多
The large-range uncertainties of specific impulse,mass flow per second,aerodynamic coefficients and atmospheric density during rapid turning in solid launch vehicles(SLVs) ascending leads to the deviation of the actua...The large-range uncertainties of specific impulse,mass flow per second,aerodynamic coefficients and atmospheric density during rapid turning in solid launch vehicles(SLVs) ascending leads to the deviation of the actual trajectory from the reference one.One of the traditional trajectory tracking methods is to observe the uncertainties by Extended State Observer(ESO) and then modify the control commands.However,ESO cannot accurately estimate the uncertainties when the uncertainty ranges are large,which reduces the guidance accuracy.This paper introduces differential inclusion(DI) and designs a controller to solve the large-range parameter uncertainties problem.When above uncertainties have large ranges,it can be combined with the ascent dynamic equation and described as a DI system in the mathematical form of a set.If the DI system is stabilized,all the subsets are stabilized.Different from the traditional controllers,the parameters of the designed controller are calculated by the uncertain boundaries.Therefore,the controller can solve the problem of large-range parameter uncertainties of in ascending.Firstly,the ascent deviation system is obtained by linearization along the reference trajectory.The trajectory tracking system with engine parameters and aerodynamic uncertainties is described as an ascent DI system with respect to state deviation,which is called DI system.A DI adaptive saturation tracking controller(DIAST) is proposed to stabilize the DI system.Secondly,an improved barrier Lyapunov function(named time-varying tangent-log barrier Lyapunov function) is proposed to constrain the state deviations.Compared with traditional barrier Lyapunov function,it can dynamically adjust the boundary of deviation convergence,which improve the convergence rate and accuracy of altitude,velocity and LTIA deviation.In addition,the correction amplitudes of angle of attack(AOA) and angle of sideslip(AOS) need to be limited in order to guarantee that the overload constraint is not violated during actual flight.In this paper,a fixed time adaptive saturation compensation auxiliary system is designed to shorten the saturation time and accelerate the convergence rate,which eliminates the adverse effects caused by the saturation.Finally,it is proved that the state deviations are ultimately uniformly bounded under the action of DIAST controller.Simulation results show that the DI ascent tracking system is stabilized within the given uncertainty boundary values.The feasible bounds of uncertainty is broadened compared with Integrated Guidance and Control algorithm.Compared with Robust Gain-Scheduling Control method,the robustness to the engine parameters are greatly improved and the control variable is smoother.展开更多
Consensus problems for discrete-time multi-agent systems were focused on. In order to design effective consensus protocols, which were aimed at ensuring that the concerned states of agents converged to a common value,...Consensus problems for discrete-time multi-agent systems were focused on. In order to design effective consensus protocols, which were aimed at ensuring that the concerned states of agents converged to a common value, a new consensus protocol for general discrete-time multi-agent system was proposed based on Lyapunov stability theory. For discrete-time multi-agent systems with desired trajectory, trajectory tracking and formation control problems were studied. The main idea of trajectory tracking problems was to design trajectory controller such that each agent tracked desired trajectory. For a type of formation problem with fixed formation structure, the formation structure set was introduced. According to the formation structure set, each agent can track its individual desired trajectory. Finally, simulations were provided to demonstrate the effectiveness of the theoretical results. The mlmerical results show that the states of agents converge to zero with consensus protocol, which is said to achieve a consensus asymptotically. In addition, through designing appropriate trajectory controllers, the simulation results show that agents converge to the desired trajectory asymptotically and can form different formations.展开更多
In order to improve the trajectory tracking precision and reduce the synchronization error of a 6-DOF lightweight robot, nonlinear proportion-deviation (N-PD) cross-coupling synchronization control strategy based on...In order to improve the trajectory tracking precision and reduce the synchronization error of a 6-DOF lightweight robot, nonlinear proportion-deviation (N-PD) cross-coupling synchronization control strategy based on adjacent coupling error analysis is presented. The mathematical models of the robot, including kinematic model, dynamic model and spline trajectory planing, are established and verified. Since it is difficult to describe the real-time contour error of the robot for complex trajectory, the adjacent coupling error is analyzed to solve the problem. Combined with nonlinear control and coupling performance of the robot, N-PD cross-coupling synchronization controller is designed and validated by simulation analysis. A servo control experimental system which mainly consists of laser tracking system, the robot mechanical system and EtherCAT based servo control system is constructed. The synchronization error is significantly decreased and the maximum trajectory error is reduced from 0.33 mm to 0.1 mm. The effectiveness of the control algorithm is validated by the experimental results, thus the control strategy can improve the robot's trajectory tracking precision significantly.展开更多
基金Project(51409061)supported by the National Natural Science Foundation of ChinaProject(2013M540271)supported by China Postdoctoral Science Foundation+1 种基金Project(LBH-Z13055)Supported by Heilongjiang Postdoctoral Financial Assistance,ChinaProject(HEUCFD1403)supported by Basic Research Foundation of Central Universities,China
文摘The trajectory tracking control problem for underactuated unmanned surface vehicles(USV) was addressed, and the control system took account of the uncertain influences induced by model perturbation, external disturbance, etc. By introducing the reference, trajectory was generated by a virtual USV, and the error equation of trajectory tracking for USV was obtained, which transformed the tracking problem of underactuated USV into the stabilization problem of the trajectory tracking error equation. A backstepping adaptive sliding mode controller was proposed based on backstepping technology and method of dynamic slide model control. By means of theoretical analysis, it is proved that the proposed controller ensures that the solutions of closed loop system have the ultimate boundedness property. Simulation results are presented to illustrate the effectiveness of the proposed controller.
文摘The stabilization and trajectory tracking problems of autonomous airship's planar motion are studied. By defining novel configuration error and velocity error, the dynamics of error systems are derived. By applying Lyapunov stability method, the state feedback control laws are designed and the close-loop error systems are proved to be uniformly asymptotically stable by Matrosov theorem. In particular, the controller does not need knowledge on system parameters in the case of set-point stabilization, which makes the controller robust with respect to parameter uncertainty. Numerical simulations illustrate the effectiveness of the controller designed.
基金Project(2006AA09Z235) supported by the National High Technology Research and Development Program of ChinaProject(CX2009B003) supported by Hunan Provincial Innovation Foundation For Postgraduates,China
文摘Autonomous underwater vehicles (AUVs) navigating in complex sea conditions usually require a strong control system to keep the fastness and stability. The nonlinear trajectory tracking control system of a new AUV in complex sea conditions was presented. According to the theory of submarines,the six-DOF kinematic and dynamic models were decomposed into two mutually non-coupled vertical and horizontal plane subsystems. Then,different sliding mode control algorithms were used to study the trajectory tracking control. Because the yaw angle and yaw angle rate rather than the displacement of the new AUV can be measured directly on the horizontal plane,the sliding mode control algorithm combining cross track error method and line of sight method was used to fulfill its high-precision trajectory tracking control in the complex sea conditions. As the vertical displacement of the new AUV can be measured,in order to achieve the tracking of time-varying depth signal,a stable sliding mode controller was designed based on the single-input multi-state system,which took into account the characteristic of the hydroplane and the amplitude and rate constraints of the hydroplane angle. Moreover,the application of dynamic boundary layer can improve the robustness and control accuracy of the system. The computational results show that the designed sliding mode control systems of the horizontal and vertical planes can ensure the trajectory tracking performance and accuracy of the new AUV in complex sea conditions. The impacts of currents and waves on the sliding mode controller of the new AUV were analyzed qualitatively and quantitatively by comparing the trajectory tracking performance of the new AUV in different sea conditions,which provides an effective theoretical guidance and technical support for the control system design of the new AUV in real complex environment.
基金Projects(51275107,52005124)supported by the National Natural Science Foundation of China。
文摘In recent years,an innovative underactuated robot was developed,named as underactuated cable-driven trusslike manipulator(UCTM),to be suitable in aerospace applications.However,there has been strong consensus that the stabilization of planar underactuated manipulators without gravity is a great challenge since the system includes a second order nonholonomic constraint and most classical control methods are not suitable for this kind of system.Furthermore,the complexity of the truss-like structure results in tremendous difficulty of computational complicacy and high nonlinearity during dynamic modelling in addition to controller design.It is paramount to solve these difficulties for UCTM's future applications.To solve the above difficulties,this paper presents a dynamic modelling method for UCTM and a trajectory tracking control method based on partial feedback linearization(PFL)that fulfills the control goal of moving UCTM from its original position to a desired position by tracking a given trajectory of the joint angles.To achieve this,a model equivalent method is proposed to make UCTM equivalent with a three-link manipulator in the sense of dynamic behavior.Then the Lagrangian equation combined with complex vector method is proposed in the dynamic modelling process of UCTM,which simplifies the derivation procedure.Based on the established dynamic model,a coordinate transformation method is proposed to transform the control force matrix into the conventional form of an underactuated system,so that the control force can be separated from the unactuated term.The PFL method in combination with the LQR control method is then proposed to realize the targets that the joint angles can track given desired trajectory.Simulation experiments are conducted to verify the correctness and effectiveness of the proposed methods.
基金Project(2006CB705400)supported by the National Basic Research Program of China
文摘The natural frequency of the electrohydraulic system in mobile machinery is always very low,which brings difficulties to the controller design.To improve the tracking performance of the hydraulic system,mathematical modeling of the electrohydraulic lifting system and the rubber hose was accomplished according to an electrohydraulic lifting test rig built in the laboratory.Then,valve compensation strategy,including spool opening compensation (SOC) and dead zone compensation (DZC),was designed based on the flow-pressure characteristic of a closed-centered proportional valve.Comparative experiments on point-to-point trajectory tracking between a proportional controller with the proposed compensations and a traditional PI controller were conducted.Experiment results show that the maximal absolute values of the tracking error are reduced from 0.039 m to 0.019 m for the slow point-to-point motion trajectory and from 0.085 m to 0.054 m for the fast point-to-point motion trajectory with the proposed compensations.Moreover,tracking error of the proposed controller was analyzed and corresponding suggestions to reduce the tracking error were put forward.
基金supported by the National Natural Science Foundation of China(11372345)
文摘The various uncertainties of Mars environment have great impact on the process of vehicles entering the atmosphere.To improve the robustness of control system against the model errors and to reduce the computational burden, an optimal feedback based tracking control law is developed. The control scheme presented in this paper determines the amplitude and the reversals of bank angle respectively in the longitudinal and lateral flight plane. At each control cycle, the amplitude of the bank angle is obtained by an optimal feedback controller to minimize tracking errors. The control gains are tuned according to the closed-loop error dynamics by using optimization methods. The bank reversals are executed if the crossrange exceeds a predetermined corridor which is designed by setting a boundary function. The accuracy and robustness of the proposed closed-loop optimal feedback based control law in tracking the reference trajectory is verified via500 deviation simulations, in which modeling errors and external disturbances are considered.
基金supported by the National Natural Science Foundation of China(61873012)。
文摘This paper proposes an L_(1)adaptive fault tolerant control method for trajectory tracking of tail-sitter aircraft in the state of motor loss fault.The tail-sitter model considers the uncertainties produced by the features of nonlinearities and couplings which cause difficulties in control.An L_(1)adaptive controller is designed to reduce the position and attitude error when actuators have faults.A reference trajectory containing large maneuver flight transitions is designed,which makes it even harder for the L_(1)controller to track accurately.Compensators are designed to assist L_(1)adaptive controller tracking of the reference trajectory.The stability of the L_(1)adaptive controller including compensators is proved.Finally,the simulation results are used to analyse the effectiveness of the proposed controller.Compared to the H∞controller,the L_(1)adaptive controller with compensators has better performance in position control and attitude control under fault tolerance state even when the aircraft conducts large maneuver.Besides,as the L_(1)adaptive control method separates feedback control and adaptive law design,the response speed of the whole system is improved.
文摘The use of a methodology of nonlinear continuous predictive control to design the guidance control law for the aircraft TF/TA2 trajectory tracking problem is emptojed. For the derivation of the predictive control law, by using Taylor series expansion, and based on optimizing a performance index which is a quadratic function of both the predictive value of the state variables and the control inputs, a state variable feedback controller for nonlinear systems is obtained, and it provides a tradeoff between satisfactory tracking performance and the control magnitude requirements. Numerical simulation results for a supersonic fighter aircraft model show the viability of this approach.
基金Project(2013M540271)supported by the Postdoctoral Science Foundation of ChinaProject(HEUCF1321003)support by the Basic Research Foundation of Central University,ChinaProject(51209050)supported by the National Natural Science Foundation of China
文摘The trajectory planning and tracking control for an underactuated unmanned surface vessel(USV) were addressed.The reference trajectory was generated by a virtual USV,and the error equation of trajectory tracking for underactuated USV was obtained,which transformed the tracking and stabilization problem of underactuated USV into the stabilization problem of the trajectory tracking error equation.A nonlinear state feedback controller was proposed based on backstepping technique and Lyapunov's direct method.By means of Lyapunov analysis,it is proved that the proposed controller ensures that the solutions of closed loop system have the ultimate boundedness property.Numerical simulation results are presented to validate the effectiveness and robustness of the proposed controller.
文摘Coordinated taxiing planning for multiple aircraft on flight deck is of vital importance which can dramatically improve the dispatching efficiency.In this paper,first,the coordinated taxiing path planning problem is transformed into a centralized optimal control problem where collision-free conditions and mechanical limits are considered.Since the formulated optimal control problem is of large state space and highly nonlinear,an efficient hierarchical initialization technique based on the Dubins-curve method is proposed.Then,a model predictive controller is designed to track the obtained reference trajectory in the presence of initial state error and external disturbances.Numerical experiments demonstrate that the proposed“offline planningþonline tracking”framework can achieve efficient and robust coordinated taxiing planning and tracking even in the presence of initial state error and continuous external disturbances.
基金Project(51979116)supported by the National Natural Science Foundation of ChinaProject(2018KFYYXJJ012,2018JYCXJJ045)supported by the Fundamental Research Funds for the Central Universities,China+1 种基金Project(YT19201702)supported by the Innovation Foundation of Maritime Defense Technologies Innovation Center,ChinaProject supported by the HUST Interdisciplinary Innovation Team Project,China。
文摘This paper addresses the problem of three-dimensional trajectory tracking control for underactuated autonomous underwater vehicles in the presence of parametric uncertainties,environmental disturbances and input saturation.First,a virtual guidance control strategy is established on the basis of tracking error kinematics,which resolves the overall control system into two cascade subsystems.Then,a first-order sliding mode differentiator is introduced in the derivation to avoid tedious analytic calculation,and a Gaussian error function-based continuous differentiable symmetric saturation model is explored to tackle the issue of input saturation.Combined with backstepping design techniques,the neural network control method and an adaptive control approach are used to estimate composite items of the unknown uncertainty and approximation errors.Meanwhile,Lyapunov-based stability analysis guarantees that control error signals of the closed-loop system are uniformly ultimately bounded.Finally,simulation studies are conducted for the trajectory tracking of a moving target and a spiral line to validate the effectiveness of the proposed controller.
基金supported by the National Natural Science Foundation of China (Grant Nos.61627810, 61790562 and 61403096)。
文摘The large-range uncertainties of specific impulse,mass flow per second,aerodynamic coefficients and atmospheric density during rapid turning in solid launch vehicles(SLVs) ascending leads to the deviation of the actual trajectory from the reference one.One of the traditional trajectory tracking methods is to observe the uncertainties by Extended State Observer(ESO) and then modify the control commands.However,ESO cannot accurately estimate the uncertainties when the uncertainty ranges are large,which reduces the guidance accuracy.This paper introduces differential inclusion(DI) and designs a controller to solve the large-range parameter uncertainties problem.When above uncertainties have large ranges,it can be combined with the ascent dynamic equation and described as a DI system in the mathematical form of a set.If the DI system is stabilized,all the subsets are stabilized.Different from the traditional controllers,the parameters of the designed controller are calculated by the uncertain boundaries.Therefore,the controller can solve the problem of large-range parameter uncertainties of in ascending.Firstly,the ascent deviation system is obtained by linearization along the reference trajectory.The trajectory tracking system with engine parameters and aerodynamic uncertainties is described as an ascent DI system with respect to state deviation,which is called DI system.A DI adaptive saturation tracking controller(DIAST) is proposed to stabilize the DI system.Secondly,an improved barrier Lyapunov function(named time-varying tangent-log barrier Lyapunov function) is proposed to constrain the state deviations.Compared with traditional barrier Lyapunov function,it can dynamically adjust the boundary of deviation convergence,which improve the convergence rate and accuracy of altitude,velocity and LTIA deviation.In addition,the correction amplitudes of angle of attack(AOA) and angle of sideslip(AOS) need to be limited in order to guarantee that the overload constraint is not violated during actual flight.In this paper,a fixed time adaptive saturation compensation auxiliary system is designed to shorten the saturation time and accelerate the convergence rate,which eliminates the adverse effects caused by the saturation.Finally,it is proved that the state deviations are ultimately uniformly bounded under the action of DIAST controller.Simulation results show that the DI ascent tracking system is stabilized within the given uncertainty boundary values.The feasible bounds of uncertainty is broadened compared with Integrated Guidance and Control algorithm.Compared with Robust Gain-Scheduling Control method,the robustness to the engine parameters are greatly improved and the control variable is smoother.
基金Projects(60474029,60774045,60604005) supported by the National Natural Science Foundation of ChinaProject supported by the Graduate Degree Thesis Innovation Foundation of Central South University,China
文摘Consensus problems for discrete-time multi-agent systems were focused on. In order to design effective consensus protocols, which were aimed at ensuring that the concerned states of agents converged to a common value, a new consensus protocol for general discrete-time multi-agent system was proposed based on Lyapunov stability theory. For discrete-time multi-agent systems with desired trajectory, trajectory tracking and formation control problems were studied. The main idea of trajectory tracking problems was to design trajectory controller such that each agent tracked desired trajectory. For a type of formation problem with fixed formation structure, the formation structure set was introduced. According to the formation structure set, each agent can track its individual desired trajectory. Finally, simulations were provided to demonstrate the effectiveness of the theoretical results. The mlmerical results show that the states of agents converge to zero with consensus protocol, which is said to achieve a consensus asymptotically. In addition, through designing appropriate trajectory controllers, the simulation results show that agents converge to the desired trajectory asymptotically and can form different formations.
基金Project(2015AA043003)supported by National High-technology Research and Development Program of ChinaProject(GY2016ZB0068)supported by Application Technology Research and Development Program of Heilongjiang Province,ChinaProject(SKLR201301A03)supported by Self-planned Task of State Key Laboratory of Robotics and System(Harbin Institute of Technology),China
文摘In order to improve the trajectory tracking precision and reduce the synchronization error of a 6-DOF lightweight robot, nonlinear proportion-deviation (N-PD) cross-coupling synchronization control strategy based on adjacent coupling error analysis is presented. The mathematical models of the robot, including kinematic model, dynamic model and spline trajectory planing, are established and verified. Since it is difficult to describe the real-time contour error of the robot for complex trajectory, the adjacent coupling error is analyzed to solve the problem. Combined with nonlinear control and coupling performance of the robot, N-PD cross-coupling synchronization controller is designed and validated by simulation analysis. A servo control experimental system which mainly consists of laser tracking system, the robot mechanical system and EtherCAT based servo control system is constructed. The synchronization error is significantly decreased and the maximum trajectory error is reduced from 0.33 mm to 0.1 mm. The effectiveness of the control algorithm is validated by the experimental results, thus the control strategy can improve the robot's trajectory tracking precision significantly.