Rehabilitation training is believed to be an effectual strategy that canreduce the risk of dysfunction caused by spasticity.However,achieving visualizationrehabilitation training for patients remains clinically challe...Rehabilitation training is believed to be an effectual strategy that canreduce the risk of dysfunction caused by spasticity.However,achieving visualizationrehabilitation training for patients remains clinically challenging.Herein,wepropose visual rehabilitation training system including iontronic meta-fabrics withskin-friendly and large matrix features,as well as high-resolution image modules fordistribution of human muscle tension.Attributed to the dynamic connection and dissociationof the meta-fabric,the fabric exhibits outstanding tactile sensing properties,such as wide tactile sensing range(0~300 kPa)and high-resolution tactile perception(50 Pa or 0.058%).Meanwhile,thanks to the differential capillary effect,the meta-fabric exhibits a“hitting three birds with one stone”property(dryness wearing experience,long working time and cooling sensing).Based on this,the fabrics can be integrated with garmentsand advanced data analysis systems to manufacture a series of large matrix structure(40×40,1600 sensing units)training devices.Significantly,the tunability of piezo-ionic dynamics of the meta-fabric and the programmability of high-resolution imaging modules allowthis visualization training strategy extendable to various common disease monitoring.Therefore,we believe that our study overcomes theconstraint of standard spasticity rehabilitation training devices in terms of visual display and paves the way for future smart healthcare.展开更多
BACKGROUND:We investigated whether the use of a specially designed visual estimation tool may improve accuracy in quantifying blood volumes related to surface spreading.METHODS:A prospective,paired-control,single-blin...BACKGROUND:We investigated whether the use of a specially designed visual estimation tool may improve accuracy in quantifying blood volumes related to surface spreading.METHODS:A prospective,paired-control,single-blinded experimental study was performed at a medical university.Anesthesiologists and emergency medical personnel estimated various blood volumes on surfaces with varying absorptivity(carpet,towel,polyvinyl chloride,wooden fl ooring)in an experimental setting.We assessed the sensitivity of training blood volume quantifi cation using a self-designed visual estimation tool by comparing the accuracy of visual blood volume estimations before and after practical training with the tool.RESULTS:A total of 352 estimations by 44 participants were evaluated.Accurate estimations improved significantly from pre-training to post-training(P<0.05).The sensitivity of blood volume quantifi cation was 33.0%after training with the visual estimation tool.Estimations did not depend on age,profession,gender or years of the estimator’s professional experience.CONCLUSIONS:Training with a visual estimation tool by professional rescuers can improve the estimation accuracy of blood volumes spread on surfaces with varying absorptivity.展开更多
Background:Technological advancements in modern military and acrobatic jet planes have resulted in extraordinary psychophysiological loads being exerted upon flying personnel,including inducing neck and back pain.The ...Background:Technological advancements in modern military and acrobatic jet planes have resulted in extraordinary psychophysiological loads being exerted upon flying personnel,including inducing neck and back pain.The purpose of this study was to examine the effects of 12 weeks of functional strength training on 1)the volume and strength of the neck and shoulder muscles and 2)muscular activity upon exposure to helmets of different masses and elevated Gz forces in a long-arm centrifuge in high-performance aircraft personnel.Methods:Eighteen participants underwent 12 weeks of functional strength training(n=12)or the control protocol(n=6)without additional strength training.Pre-and post-intervention tests included evaluations of isometric strength of the head extensor muscles,flexion,and lateral flexion and rotation,as well as magnetic resonance imaging(MRI)to measure the volume of the m.sternocleidomastoideus,m.trapezius,and deep neck muscles.Furthermore,during a long-arm centrifuge(+1.4 and+3Gz)protocol,the muscular activity levels of the m.sternocleidomastoideus,m.trapezius and m.erector spinae muscles were assessed without a flight helmet,with a helmet,and with a helmet and night vision goggles.Each participant’s perception of muscular strain was noted immediately after the long-arm centrifuge protocol.Results:The maximal isometric strength in all exercises and muscle volumes increased in the training group but not the control group(P<0.05).Relative muscle activity(%MVC)with a helmet decreased after the intervention in the training but not the control group(P=0.01).Relative muscle activity while wearing a helmet and night vision goggles was higher after intervention in the control group than in the training group(P<0.01).The perceived muscular strain of the neck muscles induced by the long-arm centrifuge did not differ between the groups.Conclusions:Twelve weeks of functional strength training improves the maximal isometric strength and volume of neck and shoulder muscles and leads to lower relative muscle activation upon exposure to elevated Gz forces in a long-arm centrifuge.展开更多
Communicating on millimeter wave(mmWave)bands is ushering in a new epoch of mobile communication which provides the availability of 10 Gbps high data rate transmission.However,mmWave links are easily prone to short tr...Communicating on millimeter wave(mmWave)bands is ushering in a new epoch of mobile communication which provides the availability of 10 Gbps high data rate transmission.However,mmWave links are easily prone to short transmission range communication because of the serious free space path loss and the blockage by obstacles.To overcome these challenges,highly directional beams are exploited to achieve robust links by hybrid beamforming.Accurately aligning the transmitter and receiver beams,i.e.beam training,is vitally important to high data rate transmission.However,it may cause huge overhead which has negative effects on initial access,handover,and tracking.Besides,the mobility patterns of users are complicated and dynamic,which may cause tracking error and large tracking latency.An efficient beam tracking method has a positive effect on sustaining robust links.This article provides an overview of the beam training and tracking technologies on mmWave bands and reveals the insights for future research in the 6th Generation(6G)mobile network.Especially,some open research problems are proposed to realize fast,accurate,and robust beam training and tracking.We hope that this survey provides guidelines for the researchers in the area of mmWave communications.展开更多
The human brain is highly plastic.Cognitive training is usually used to modify functional connectivity of brain networks.Moreover,the structures of brain networks may determine its dynamic behavior which is related to...The human brain is highly plastic.Cognitive training is usually used to modify functional connectivity of brain networks.Moreover,the structures of brain networks may determine its dynamic behavior which is related to human cognitive abilities.To study the effect of functional connectivity on the brain dynamics,the dynamic model based on functional connections of the brain and the Hindmarsh–Rose model is utilized in this work.The resting-state fMRI data from the experimental group undergoing abacus-based mental calculation(AMC)training and from the control group are used to construct the functional brain networks.The dynamic behavior of brain at the resting and task states for the AMC group and the control group are simulated with the above-mentioned dynamic model.In the resting state,there are the differences of brain activation between the AMC group and the control group,and more brain regions are inspired in the AMC group.A stimulus with sinusoidal signals to brain networks is introduced to simulate the brain dynamics in the task states.The dynamic characteristics are extracted by the excitation rates,the response intensities and the state distributions.The change in the functional connectivity of brain networks with the AMC training would in turn improve the brain response to external stimulus,and make the brain more efficient in processing tasks.展开更多
Hunting stability is an important performance criterion in railway vehicles.This study proposes an incorporation of a bio-inspired limb-like structure(LLS)-based nonlinear damping into the motor suspension system for ...Hunting stability is an important performance criterion in railway vehicles.This study proposes an incorporation of a bio-inspired limb-like structure(LLS)-based nonlinear damping into the motor suspension system for traction units to improve the nonlinear critical speed and hunting stability of high-speed trains(HSTs).Initially,a vibration transmission analysis is conducted on a HST vehicle and a metro vehicle that suffered from hunting motion to explore the effect of different motor suspension systems from on-track tests.Subsequently,a simplified lateral dynamics model of an HST bogie is established to investigate the influence of the motor suspension on the bogie hunting behavior.The bifurcation analysis is applied to optimize the motor suspension parameters for high critical speed.Then,the nonlinear damping of the bio-inspired LLS,which has a positive correlation with the relative displacement,can further improve the modal damping of hunting motion and nonlinear critical speed compared with the linear motor suspension system.Furthermore,a comprehensive numerical model of a high-speed train,considering all nonlinearities,is established to investigate the influence of different types of motor suspension.The simulation results are well consistent with the theoretical analysis.The benefits of employing nonlinear damping of the bio-inspired LLS into the motor suspension of HSTs to enhance bogie hunting stability are thoroughly validated.展开更多
Holographic multiple-input multiple-output(HMIMO)has become an emerging technology for achieving ultra-high frequency spectral efficiency and spatial resolution in future wireless systems.The increasing antenna apertu...Holographic multiple-input multiple-output(HMIMO)has become an emerging technology for achieving ultra-high frequency spectral efficiency and spatial resolution in future wireless systems.The increasing antenna aperture leads to a more significant characterization of the spherical wavefront in near-field communications in HMIMO scenarios.Beam training as a key technique for wireless communication is worth exploring in this near-field scenario.Compared with the widely researched far-field beam training,the increased dimensionality of the search space for near-field beam training poses a challenge to the complexity and accuracy of the proposed algorithm.In this paper,we introduce several typical near-field beam training methods:exhaustive beam training,hierarchical beam training,and multi-beam training that includes equal interval multi-beam training and hash multi-beam training.The performances of these methods are compared through simulation analysis,and their effectiveness is verified on the hardware testbed as well.Additionally,we provide application scenarios,research challenges,and potential future research directions for near-field beam training.展开更多
The emerging virtual coupling technology aims to operate multiple train units in a Virtually Coupled Train Set(VCTS)at a minimal but safe distance.To guarantee collision avoidance,the safety distance should be calcula...The emerging virtual coupling technology aims to operate multiple train units in a Virtually Coupled Train Set(VCTS)at a minimal but safe distance.To guarantee collision avoidance,the safety distance should be calculated using the state-of-the-art space-time separation principle that separates the Emergency Braking(EB)trajectories of two successive units during the whole EB process.In this case,the minimal safety distance is usually numerically calculated without an analytic formulation.Thus,the constrained VCTS control problem is hard to address with space-time separation,which is still a gap in the existing literature.To solve this problem,we propose a Distributed Economic Model Predictive Control(DEMPC)approach with computation efficiency and theoretical guarantee.Specifically,to alleviate the computation burden,we transform implicit safety constraints into explicitly linear ones,such that the optimal control problem in DEMPC is a quadratic programming problem that can be solved efficiently.For theoretical analysis,sufficient conditions are derived to guarantee the recursive feasibility and stability of DEMPC,employing compatibility constraints,tube techniques and terminal ingredient tuning.Moreover,we extend our approach with globally optimal and distributed online EB configuration methods to shorten the minimal distance among VCTS.Finally,experimental results demonstrate the performance and advantages of the proposed approaches.展开更多
Although train modeling research is vast, most available simulation tools are confined to city-or trip-scale analysis, primarily offering micro-level simulations of network segments. This paper addresses this void by ...Although train modeling research is vast, most available simulation tools are confined to city-or trip-scale analysis, primarily offering micro-level simulations of network segments. This paper addresses this void by developing the Ne Train Sim simulator for heavy long-haul freight trains on a network of multiple intersecting tracks. The main objective of this simulator is to enable a comprehensive analysis of energy consumption and the associated carbon footprint for the entire train system. Four case studies were conducted to demonstrate the simulator's performance. The first case study validates the model by comparing Ne Train Sim output to empirical trajectory data. The results demonstrate that the simulated trajectory is precise enough to estimate the train energy consumption and carbon dioxide emissions. The second application demonstrates the train-following model considering six trains following each other. The results showcase the model ability to maintain safefollowing distances between successive trains. The next study highlights the simulator's ability to resolve train conflicts for different scenarios. Finally, the suitability of the Ne Train Sim for modeling realistic railroad networks is verified through the modeling of the entire US network and comparing alternative powertrains on the fleet energy consumption.展开更多
The reduction of energy consumption is an increasingly important topic of the railway system.Energy-efficient train control(EETC)is one solution,which refers to mathematically computing when to accelerate,which cruisi...The reduction of energy consumption is an increasingly important topic of the railway system.Energy-efficient train control(EETC)is one solution,which refers to mathematically computing when to accelerate,which cruising speed to hold,how long one should coast over a suitable space,and when to brake.Most approaches in literature and industry greatly simplify a lot of nonlinear effects,such that they ignore mostly the losses due to energy conversion in traction components and auxiliaries.To fill this research gap,a series of increasingly detailed nonlinear losses is described and modelled.We categorize an increasing detail in this representation as four levels.We study the impact of those levels of detail on the energy optimal speed trajectory.To do this,a standard approach based on dynamic programming is used,given constraints on total travel time.This evaluation of multiple test cases highlights the influence of the dynamic losses and the power consumption of auxiliary components on railway trajectories,also compared to multiple benchmarks.The results show how the losses can make up 50%of the total energy consumption for an exemplary trip.Ignoring them would though result in consistent but limited errors in the optimal trajectory.Overall,more complex trajectories can result in less energy consumption when including the complexity of nonlinear losses than when a simpler model is considered.Those effects are stronger when the trajectory includes many acceleration and braking phases.展开更多
The high-speed train transmission system,experiencing both the internal excitation originating from gear meshing and the external excitation originating from the wheel-rail interaction,exhibits complex dynamic behavio...The high-speed train transmission system,experiencing both the internal excitation originating from gear meshing and the external excitation originating from the wheel-rail interaction,exhibits complex dynamic behavior in the actual service environment.This paper focuses on the gearbox in the high-speed train to carry out the bench test,in which various operat-ing conditions(torques and rotation speeds)were set up and the excitation condition covering both internal and external was created.Acceleration responses on multiple positions of the gearbox were acquired in the test and the vibration behavior of the gearbox was studied.Meanwhile,a stochastic excitation modal test was also carried out on the test bench under different torques,and the modal parameter of the gearbox was identified.Finally,the sweep frequency response of the gearbox under gear meshing excitation was analyzed through dynamic modeling.The results showed that the torque has an attenuating effect on the amplitude of gear meshing frequency on the gearbox,and the effect of external excitation on the gearbox vibration cannot be ignored,especially under the rated operating condition.It was also found that the torque affects the modal param-eter of the gearbox significantly.The torque has a great effect on both the gear meshing stiffness and the bearing stiffness in the transmission system,which is the inherent reason for the changed modal characteristics observed in the modal test and affects the vibration behavior of the gearbox consequently.展开更多
Acoustic models of railway vehicles in standstill and pass-by conditions can be used as part of a virtual certification process for new trains.For each piece of auxiliary equipment,the sound power measured on a test b...Acoustic models of railway vehicles in standstill and pass-by conditions can be used as part of a virtual certification process for new trains.For each piece of auxiliary equipment,the sound power measured on a test bench is combined with meas-ured or predicted transfer functions.It is important,however,to allow for installation effects due to shielding by fairings or the train body.In the current work,fast-running analytical models are developed to determine these installation effects.The model for roof-mounted sources takes account of diffraction at the corner of the train body or fairing,using a barrier model.For equipment mounted under the train,the acoustic propagation from the sides of the source is based on free-field Green’s functions.The bottom surfaces are assumed to radiate initially into a cavity under the train,which is modelled with a simple diffuse field approach.The sound emitted from the gaps at the side of the cavity is then assumed to propagate to the receivers according to free-field Green’s functions.Results show good agreement with a 2.5D boundary element model and with measurements.Modelling uncertainty and parametric uncertainty are evaluated.The largest variability occurs due to the height and impedance of the ground,especially for a low receiver.This leads to standard deviations of up to 4 dB at low frequencies.For the roof-mounted sources,uncertainty over the location of the corner used in the equivalent barrier model can also lead to large standard deviations.展开更多
High-speed trains typically utilize helical gear transmissions,which significantly impact the bearing load capacity and fatigue service performance of the gearbox bearings.This paper focuses on the gearbox bearings,es...High-speed trains typically utilize helical gear transmissions,which significantly impact the bearing load capacity and fatigue service performance of the gearbox bearings.This paper focuses on the gearbox bearings,establishing dynamic models for both helical gear and herringbone gear transmissions in high-speed trains.The modeling particularly emphasizes the precision of the bearings at the gearbox's pinion and gear wheels.Using this model,a comparative analysis is conducted on the bearing loads and contact stresses of the gearbox bearings under uniform-speed operation between the two gear transmissions.The findings reveal that the helical gear transmission generates axial forces leading to severe load imbalance on the bearings at both sides of the large gear,and this imbalance intensifies with the increase in train speed.Consequently,this results in a significant increase in contact stress on the bearings on one side.The adoption of herringbone gear transmission effectively suppresses axial forces,resolving the load imbalance issue and substantially reducing the contact stress on the originally biased side of the bearings.The study demonstrates that employing herringbone gear transmission can significantly enhance the service performance of high-speed train gearbox bearings,thereby extending their service life.展开更多
The accurate assessment of running safety during earthquakes is of significant importance for ensuring the safety of railway lines.Currently,assessment methods based on a single index suffer from issues such as misjud...The accurate assessment of running safety during earthquakes is of significant importance for ensuring the safety of railway lines.Currently,assessment methods based on a single index suffer from issues such as misjudgment of operational safety and difficulty in evaluating operational margin,making them unsuitable for assessing train safety during earthquakes.Therefore,in order to propose an effective evaluation method for the running safety of trains during earthquakes,this study employs three indexes,namely lateral displacement of the wheel–rail contact point,wheel unloading rate,and wheel lift,to describe the lateral and vertical contact states between the wheel and rail.The corresponding evolution characteristics of the wheel–rail contact states are determined,and the derailment forms under different frequency components of seismic motion are identified through dynamic numerical simulations of the train–track coupled system under sine excitation.The variations in the wheel–rail contact states during the transition from a safe state to the critical state of derailment are analyzed,thereby constructing the evolutionary path of train derailment and seismic derailment risk domain.Lastly,the wheel–rail contact and derailment states under seismic conditions are analyzed,thus verifying the effectiveness of the evaluation method for assessing running safety under earthquakes proposed in this study.The results indicate that the assessment method based on the derailment risk domain accurately and comprehensively reflects the wheel–rail contact states under seismic conditions.It successfully determines the forms of train derailment,the risk levels of derailment,and the evolutionary paths of derailment risk.展开更多
Investigations into the aerodynamic properties of vertical sound barriers exposed to high-speed operations employ computational fluid dynamics.The primary focus of this research is to evaluate the influence of train s...Investigations into the aerodynamic properties of vertical sound barriers exposed to high-speed operations employ computational fluid dynamics.The primary focus of this research is to evaluate the influence of train speed and the distance(D)from the track centerline under various operating conditions.The findings elucidate a marked elevation in the aerodynamic effect amplitude on sound barriers as train speeds increase.In single-train passages,the aerodynamic effect amplitude manifests a direct relationship with the square of the train speed.When two trains pass each other,the aerodynamic amplitude intensifies due to an additional aerodynamic increment on the sound barrier.This increment exhibits an approximate quadratic correlation with the retrograde train speed.Notably,the impact of high-speed trains on sound barrier aerodynamics surpasses that of low-speed trains,and this discrepancy amplifies with larger speed differentials between trains.Moreover,the train-induced aerodynamic effect diminishes significantly with greater distance(D),with occurrences of pressure coefficient(CP)exceeding the standard thresholds during dual-train passages.This study culminates in the formulation of universal equations for quantifying the influence of train speed and distance(D)on sound barrier aerodynamic characteristics across various operational scenarios.展开更多
The dynamic load distribution within in-service axlebox bearings of high-speed trains is crucial for the fatigue reliability assessment and forward design of axlebox bearings. This paper presents an in situ measuremen...The dynamic load distribution within in-service axlebox bearings of high-speed trains is crucial for the fatigue reliability assessment and forward design of axlebox bearings. This paper presents an in situ measurement of the dynamic load distribution in the four rows of two axlebox bearings on a bogie wheelset of a high-speed train under polygonal wheel–rail excitation. The measurement employed an improved strain-based method to measure the dynamic radial load distribution of roller bearings. The four rows of two axlebox bearings on a wheelset exhibited different ranges of loaded zones and different means of distributed loads. Besides, the mean value and standard deviation of measured roller–raceway contact loads showed non-monotonic variations with the frequency of wheel–rail excitation. The fatigue life of the four bearing rows under polygonal wheel–rail excitation was quantitatively predicted by compiling the measured roller–raceway contact load spectra of the most loaded position and considering the load spectra as input.展开更多
Segregated incompressible large eddy simulation and acoustic perturbation equations were used to obtain the flow field and sound field of 1:25 scale trains with three,six and eight coaches in a long tunnel,and the aer...Segregated incompressible large eddy simulation and acoustic perturbation equations were used to obtain the flow field and sound field of 1:25 scale trains with three,six and eight coaches in a long tunnel,and the aerodynamic results were verified by wind tunnel test with the same scale two-coach train model.Time-averaged drag coefficients of the head coach of three trains are similar,but at the tail coach of the multi-group trains it is much larger than that of the three-coach train.The eight-coach train presents the largest increment from the head coach to the tail coach in the standard deviation(STD)of aerodynamic force coefficients:0.0110 for drag coefficient(Cd),0.0198 for lift coefficient(Cl)and 0.0371 for side coef-ficient(Cs).Total sound pressure level at the bottom of multi-group trains presents a significant streamwise increase,which is different from the three-coach train.Tunnel walls affect the acoustic distribution at the bottom,only after the coach number reaches a certain value,and the streamwise increase in the sound pressure fluctuation of multi-group trains is strengthened by coach number.Fourier transform of the turbulent and sound pressures presents that coach number has little influence on the peak frequencies,but increases the sound pressure level values at the tail bogie cavities.Furthermore,different from the turbulent pressure,the first two sound pressure proper orthogonal decomposition(POD)modes in the bogie cavities contain 90%of the total energy,and the spatial distributions indicate that the acoustic distributions in the head and tail bogies are not related to coach number.展开更多
Magnetic levitation control technology plays a significant role in maglev trains.Designing a controller for the levitation system is challenging due to the strong nonlinearity,open-loop instability,and the need for fa...Magnetic levitation control technology plays a significant role in maglev trains.Designing a controller for the levitation system is challenging due to the strong nonlinearity,open-loop instability,and the need for fast response and security.In this paper,we propose a Disturbance-Observe-based Tube Model Predictive Levitation Control(DO-TMPLC)scheme combined with a feedback linearization strategy for the levitation system.The proposed strategy incorporates state constraints and control input constraints,i.e.,the air gap,the vertical velocity,and the current applied to the coil.A feedback linearization strategy is used to cancel the nonlinearity of the tracking error system.Then,a disturbance observer is implemented to actively compensate for disturbances while a TMPLC controller is employed to alleviate the remaining disturbances.Furthermore,we analyze the recursive feasibility and input-to-state stability of the closed-loop system.The simulation results indicate the efficacy of the proposed control strategy.展开更多
Multisensor data fusionmethod can improve the accuracy of bearing fault diagnosis,in order to address the problems of single-sensor data types and the insufficient exploration of redundancy and complementarity between...Multisensor data fusionmethod can improve the accuracy of bearing fault diagnosis,in order to address the problems of single-sensor data types and the insufficient exploration of redundancy and complementarity between different modal data in most existing multisensor data fusion methods for bearing fault diagnosis,a bearing fault diagnosis method based on a Multiple-Constraint Modal-Invariant Graph Convolutional Fusion Network(MCMI-GCFN)is proposed in this paper.Firstly,a Convolutional Autoencoder(CAE)and Squeeze-and-Excitation Block(SE block)are used to extract features of raw current and vibration signals.Secondly,the model introduces source domain classifiers and domain discriminators to capture modal invariance between different modal data based on domain adversarial training,making use of the redundancy and complementarity between multimodal data.Then,the spatial aggregation property of Graph Convolutional Neural Networks(GCN)is utilized to capture the dependency relationship between current and vibration modes with similar time step features for accurately fusing contextual semantic information.Finally,the validation is conducted on the public bearing damage current and vibration dataset from Paderborn University.The experimental results showed that the delivered fusion method achieved a bearing fault diagnosis accuracy of 99.6%,which was about 9%–11.4%better than that with nonfusion methods.展开更多
基金supported by the National Key Research and Development Program(2022YFB3805800)National Natural Science Foundation of China(52473307,22208178,62301290)+9 种基金Taishan Scholar Program of Shandong Province in China(tsqn202211116)Shandong Provincial Universities Youth Innovation Technology Plan Team(2023KJ223)Natural Science Foundation of Shandong Province of China(ZR2023YQ037,ZR2020QE074,ZR2023QE043,ZR2022QE174)Shandong Province Science and Technology Small and Medium sized Enterprise Innovation Ability Enhancement Project(2023TSGC0344,2023TSGC1006)Natural Science Foundation of Qingdao(23-2-1-249-zyyd-jch,24-4-4-zrjj-56-jch)Anhui Province Postdoctoral Researcher Research Activity Funding Project(2023B706)Qingdao Key Technology Research and Industrialization Demonstration Projects(23-1-7-zdfn-2-hz)Qingdao Shinan District Science and Technology Plan Project(2022-3-005-DZ)Suqian Key Research and Development Plan(H202310)Jinan City-School Integration Development Strategy Project for the Year 2023 under Grant(JNSX2023088).
文摘Rehabilitation training is believed to be an effectual strategy that canreduce the risk of dysfunction caused by spasticity.However,achieving visualizationrehabilitation training for patients remains clinically challenging.Herein,wepropose visual rehabilitation training system including iontronic meta-fabrics withskin-friendly and large matrix features,as well as high-resolution image modules fordistribution of human muscle tension.Attributed to the dynamic connection and dissociationof the meta-fabric,the fabric exhibits outstanding tactile sensing properties,such as wide tactile sensing range(0~300 kPa)and high-resolution tactile perception(50 Pa or 0.058%).Meanwhile,thanks to the differential capillary effect,the meta-fabric exhibits a“hitting three birds with one stone”property(dryness wearing experience,long working time and cooling sensing).Based on this,the fabrics can be integrated with garmentsand advanced data analysis systems to manufacture a series of large matrix structure(40×40,1600 sensing units)training devices.Significantly,the tunability of piezo-ionic dynamics of the meta-fabric and the programmability of high-resolution imaging modules allowthis visualization training strategy extendable to various common disease monitoring.Therefore,we believe that our study overcomes theconstraint of standard spasticity rehabilitation training devices in terms of visual display and paves the way for future smart healthcare.
文摘BACKGROUND:We investigated whether the use of a specially designed visual estimation tool may improve accuracy in quantifying blood volumes related to surface spreading.METHODS:A prospective,paired-control,single-blinded experimental study was performed at a medical university.Anesthesiologists and emergency medical personnel estimated various blood volumes on surfaces with varying absorptivity(carpet,towel,polyvinyl chloride,wooden fl ooring)in an experimental setting.We assessed the sensitivity of training blood volume quantifi cation using a self-designed visual estimation tool by comparing the accuracy of visual blood volume estimations before and after practical training with the tool.RESULTS:A total of 352 estimations by 44 participants were evaluated.Accurate estimations improved significantly from pre-training to post-training(P<0.05).The sensitivity of blood volume quantifi cation was 33.0%after training with the visual estimation tool.Estimations did not depend on age,profession,gender or years of the estimator’s professional experience.CONCLUSIONS:Training with a visual estimation tool by professional rescuers can improve the estimation accuracy of blood volumes spread on surfaces with varying absorptivity.
文摘Background:Technological advancements in modern military and acrobatic jet planes have resulted in extraordinary psychophysiological loads being exerted upon flying personnel,including inducing neck and back pain.The purpose of this study was to examine the effects of 12 weeks of functional strength training on 1)the volume and strength of the neck and shoulder muscles and 2)muscular activity upon exposure to helmets of different masses and elevated Gz forces in a long-arm centrifuge in high-performance aircraft personnel.Methods:Eighteen participants underwent 12 weeks of functional strength training(n=12)or the control protocol(n=6)without additional strength training.Pre-and post-intervention tests included evaluations of isometric strength of the head extensor muscles,flexion,and lateral flexion and rotation,as well as magnetic resonance imaging(MRI)to measure the volume of the m.sternocleidomastoideus,m.trapezius,and deep neck muscles.Furthermore,during a long-arm centrifuge(+1.4 and+3Gz)protocol,the muscular activity levels of the m.sternocleidomastoideus,m.trapezius and m.erector spinae muscles were assessed without a flight helmet,with a helmet,and with a helmet and night vision goggles.Each participant’s perception of muscular strain was noted immediately after the long-arm centrifuge protocol.Results:The maximal isometric strength in all exercises and muscle volumes increased in the training group but not the control group(P<0.05).Relative muscle activity(%MVC)with a helmet decreased after the intervention in the training but not the control group(P=0.01).Relative muscle activity while wearing a helmet and night vision goggles was higher after intervention in the control group than in the training group(P<0.01).The perceived muscular strain of the neck muscles induced by the long-arm centrifuge did not differ between the groups.Conclusions:Twelve weeks of functional strength training improves the maximal isometric strength and volume of neck and shoulder muscles and leads to lower relative muscle activation upon exposure to elevated Gz forces in a long-arm centrifuge.
基金supported in part by the National Natural Science Foundation of China(NSFC)under Grant 92267202in part by the Municipal Government of Quzhou under Grant 2023D027+2 种基金in part by the National Natural Science Foundation of China(NSFC)under Grant 62321001in part by the National Key Research and Development Program of China under Grant 2020YFA0711303in part by the Beijing Natural Science Foundation under Grant Z220004.
文摘Communicating on millimeter wave(mmWave)bands is ushering in a new epoch of mobile communication which provides the availability of 10 Gbps high data rate transmission.However,mmWave links are easily prone to short transmission range communication because of the serious free space path loss and the blockage by obstacles.To overcome these challenges,highly directional beams are exploited to achieve robust links by hybrid beamforming.Accurately aligning the transmitter and receiver beams,i.e.beam training,is vitally important to high data rate transmission.However,it may cause huge overhead which has negative effects on initial access,handover,and tracking.Besides,the mobility patterns of users are complicated and dynamic,which may cause tracking error and large tracking latency.An efficient beam tracking method has a positive effect on sustaining robust links.This article provides an overview of the beam training and tracking technologies on mmWave bands and reveals the insights for future research in the 6th Generation(6G)mobile network.Especially,some open research problems are proposed to realize fast,accurate,and robust beam training and tracking.We hope that this survey provides guidelines for the researchers in the area of mmWave communications.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62276229 and 32071096).
文摘The human brain is highly plastic.Cognitive training is usually used to modify functional connectivity of brain networks.Moreover,the structures of brain networks may determine its dynamic behavior which is related to human cognitive abilities.To study the effect of functional connectivity on the brain dynamics,the dynamic model based on functional connections of the brain and the Hindmarsh–Rose model is utilized in this work.The resting-state fMRI data from the experimental group undergoing abacus-based mental calculation(AMC)training and from the control group are used to construct the functional brain networks.The dynamic behavior of brain at the resting and task states for the AMC group and the control group are simulated with the above-mentioned dynamic model.In the resting state,there are the differences of brain activation between the AMC group and the control group,and more brain regions are inspired in the AMC group.A stimulus with sinusoidal signals to brain networks is introduced to simulate the brain dynamics in the task states.The dynamic characteristics are extracted by the excitation rates,the response intensities and the state distributions.The change in the functional connectivity of brain networks with the AMC training would in turn improve the brain response to external stimulus,and make the brain more efficient in processing tasks.
基金the National Natural Science Foundation of China (Nos. 52388102, 52072317 and U2268210)the State Key Laboratory of Rail Transit Vehicle System (No. 2024RVL-T12)
文摘Hunting stability is an important performance criterion in railway vehicles.This study proposes an incorporation of a bio-inspired limb-like structure(LLS)-based nonlinear damping into the motor suspension system for traction units to improve the nonlinear critical speed and hunting stability of high-speed trains(HSTs).Initially,a vibration transmission analysis is conducted on a HST vehicle and a metro vehicle that suffered from hunting motion to explore the effect of different motor suspension systems from on-track tests.Subsequently,a simplified lateral dynamics model of an HST bogie is established to investigate the influence of the motor suspension on the bogie hunting behavior.The bifurcation analysis is applied to optimize the motor suspension parameters for high critical speed.Then,the nonlinear damping of the bio-inspired LLS,which has a positive correlation with the relative displacement,can further improve the modal damping of hunting motion and nonlinear critical speed compared with the linear motor suspension system.Furthermore,a comprehensive numerical model of a high-speed train,considering all nonlinearities,is established to investigate the influence of different types of motor suspension.The simulation results are well consistent with the theoretical analysis.The benefits of employing nonlinear damping of the bio-inspired LLS into the motor suspension of HSTs to enhance bogie hunting stability are thoroughly validated.
文摘Holographic multiple-input multiple-output(HMIMO)has become an emerging technology for achieving ultra-high frequency spectral efficiency and spatial resolution in future wireless systems.The increasing antenna aperture leads to a more significant characterization of the spherical wavefront in near-field communications in HMIMO scenarios.Beam training as a key technique for wireless communication is worth exploring in this near-field scenario.Compared with the widely researched far-field beam training,the increased dimensionality of the search space for near-field beam training poses a challenge to the complexity and accuracy of the proposed algorithm.In this paper,we introduce several typical near-field beam training methods:exhaustive beam training,hierarchical beam training,and multi-beam training that includes equal interval multi-beam training and hash multi-beam training.The performances of these methods are compared through simulation analysis,and their effectiveness is verified on the hardware testbed as well.Additionally,we provide application scenarios,research challenges,and potential future research directions for near-field beam training.
基金supported by the National Natural Science Foundation of China(52372310)the State Key Laboratory of Advanced Rail Autonomous Operation(RAO2023ZZ001)+1 种基金the Fundamental Research Funds for the Central Universities(2022JBQY001)Beijing Laboratory of Urban Rail Transit.
文摘The emerging virtual coupling technology aims to operate multiple train units in a Virtually Coupled Train Set(VCTS)at a minimal but safe distance.To guarantee collision avoidance,the safety distance should be calculated using the state-of-the-art space-time separation principle that separates the Emergency Braking(EB)trajectories of two successive units during the whole EB process.In this case,the minimal safety distance is usually numerically calculated without an analytic formulation.Thus,the constrained VCTS control problem is hard to address with space-time separation,which is still a gap in the existing literature.To solve this problem,we propose a Distributed Economic Model Predictive Control(DEMPC)approach with computation efficiency and theoretical guarantee.Specifically,to alleviate the computation burden,we transform implicit safety constraints into explicitly linear ones,such that the optimal control problem in DEMPC is a quadratic programming problem that can be solved efficiently.For theoretical analysis,sufficient conditions are derived to guarantee the recursive feasibility and stability of DEMPC,employing compatibility constraints,tube techniques and terminal ingredient tuning.Moreover,we extend our approach with globally optimal and distributed online EB configuration methods to shorten the minimal distance among VCTS.Finally,experimental results demonstrate the performance and advantages of the proposed approaches.
基金funded in part by the Advanced Research Projects AgencyEnergy (ARPA-E), U.S. Department of Energy, under award number DE-AR0001471。
文摘Although train modeling research is vast, most available simulation tools are confined to city-or trip-scale analysis, primarily offering micro-level simulations of network segments. This paper addresses this void by developing the Ne Train Sim simulator for heavy long-haul freight trains on a network of multiple intersecting tracks. The main objective of this simulator is to enable a comprehensive analysis of energy consumption and the associated carbon footprint for the entire train system. Four case studies were conducted to demonstrate the simulator's performance. The first case study validates the model by comparing Ne Train Sim output to empirical trajectory data. The results demonstrate that the simulated trajectory is precise enough to estimate the train energy consumption and carbon dioxide emissions. The second application demonstrates the train-following model considering six trains following each other. The results showcase the model ability to maintain safefollowing distances between successive trains. The next study highlights the simulator's ability to resolve train conflicts for different scenarios. Finally, the suitability of the Ne Train Sim for modeling realistic railroad networks is verified through the modeling of the entire US network and comparing alternative powertrains on the fleet energy consumption.
基金supported by Swiss Federal Office of Transport,the ETH foundation and via the grant RAILPOWER.
文摘The reduction of energy consumption is an increasingly important topic of the railway system.Energy-efficient train control(EETC)is one solution,which refers to mathematically computing when to accelerate,which cruising speed to hold,how long one should coast over a suitable space,and when to brake.Most approaches in literature and industry greatly simplify a lot of nonlinear effects,such that they ignore mostly the losses due to energy conversion in traction components and auxiliaries.To fill this research gap,a series of increasingly detailed nonlinear losses is described and modelled.We categorize an increasing detail in this representation as four levels.We study the impact of those levels of detail on the energy optimal speed trajectory.To do this,a standard approach based on dynamic programming is used,given constraints on total travel time.This evaluation of multiple test cases highlights the influence of the dynamic losses and the power consumption of auxiliary components on railway trajectories,also compared to multiple benchmarks.The results show how the losses can make up 50%of the total energy consumption for an exemplary trip.Ignoring them would though result in consistent but limited errors in the optimal trajectory.Overall,more complex trajectories can result in less energy consumption when including the complexity of nonlinear losses than when a simpler model is considered.Those effects are stronger when the trajectory includes many acceleration and braking phases.
基金The authors are grateful for the financial support from the National Key Research and Development Program of China(Grant No.2021YFB3400701)the Fundamental Research Funds for the Central Universities(Science and technology leading talent team project,Grant No.2022JBQY007).
文摘The high-speed train transmission system,experiencing both the internal excitation originating from gear meshing and the external excitation originating from the wheel-rail interaction,exhibits complex dynamic behavior in the actual service environment.This paper focuses on the gearbox in the high-speed train to carry out the bench test,in which various operat-ing conditions(torques and rotation speeds)were set up and the excitation condition covering both internal and external was created.Acceleration responses on multiple positions of the gearbox were acquired in the test and the vibration behavior of the gearbox was studied.Meanwhile,a stochastic excitation modal test was also carried out on the test bench under different torques,and the modal parameter of the gearbox was identified.Finally,the sweep frequency response of the gearbox under gear meshing excitation was analyzed through dynamic modeling.The results showed that the torque has an attenuating effect on the amplitude of gear meshing frequency on the gearbox,and the effect of external excitation on the gearbox vibration cannot be ignored,especially under the rated operating condition.It was also found that the torque affects the modal param-eter of the gearbox significantly.The torque has a great effect on both the gear meshing stiffness and the bearing stiffness in the transmission system,which is the inherent reason for the changed modal characteristics observed in the modal test and affects the vibration behavior of the gearbox consequently.
基金The work described here has been supported by the TRANSIT project(funded by EU Horizon 2020 and the Europe’s Rail Joint Undertaking under grant agreement 881771).
文摘Acoustic models of railway vehicles in standstill and pass-by conditions can be used as part of a virtual certification process for new trains.For each piece of auxiliary equipment,the sound power measured on a test bench is combined with meas-ured or predicted transfer functions.It is important,however,to allow for installation effects due to shielding by fairings or the train body.In the current work,fast-running analytical models are developed to determine these installation effects.The model for roof-mounted sources takes account of diffraction at the corner of the train body or fairing,using a barrier model.For equipment mounted under the train,the acoustic propagation from the sides of the source is based on free-field Green’s functions.The bottom surfaces are assumed to radiate initially into a cavity under the train,which is modelled with a simple diffuse field approach.The sound emitted from the gaps at the side of the cavity is then assumed to propagate to the receivers according to free-field Green’s functions.Results show good agreement with a 2.5D boundary element model and with measurements.Modelling uncertainty and parametric uncertainty are evaluated.The largest variability occurs due to the height and impedance of the ground,especially for a low receiver.This leads to standard deviations of up to 4 dB at low frequencies.For the roof-mounted sources,uncertainty over the location of the corner used in the equivalent barrier model can also lead to large standard deviations.
基金financial support provided by the National Key Research and Development Project of China(Grant No.2022YFB3402901)the National Natural Science Foundation of China(Grant No.52305070,52302467)。
文摘High-speed trains typically utilize helical gear transmissions,which significantly impact the bearing load capacity and fatigue service performance of the gearbox bearings.This paper focuses on the gearbox bearings,establishing dynamic models for both helical gear and herringbone gear transmissions in high-speed trains.The modeling particularly emphasizes the precision of the bearings at the gearbox's pinion and gear wheels.Using this model,a comparative analysis is conducted on the bearing loads and contact stresses of the gearbox bearings under uniform-speed operation between the two gear transmissions.The findings reveal that the helical gear transmission generates axial forces leading to severe load imbalance on the bearings at both sides of the large gear,and this imbalance intensifies with the increase in train speed.Consequently,this results in a significant increase in contact stress on the bearings on one side.The adoption of herringbone gear transmission effectively suppresses axial forces,resolving the load imbalance issue and substantially reducing the contact stress on the originally biased side of the bearings.The study demonstrates that employing herringbone gear transmission can significantly enhance the service performance of high-speed train gearbox bearings,thereby extending their service life.
基金supported by the National Key R&D Program“Transportation Infrastructure”“Reveal The List and Take Command”project(2022YFB2603301)National Natural Science Foundation of China(No.52078498)+3 种基金Natural Science Foundation of Hunan Province of China(No.2022JJ30745)Frontier cross research project of Central South University(No.2023QYJC006)Hunan Provincial Science and Technology Promotion Talent Project(No.2020TJ-Q19)Science and Technology Research and Development Program Project of China railway group limited(Major Special Project,No.2021-Special-04-2)。
文摘The accurate assessment of running safety during earthquakes is of significant importance for ensuring the safety of railway lines.Currently,assessment methods based on a single index suffer from issues such as misjudgment of operational safety and difficulty in evaluating operational margin,making them unsuitable for assessing train safety during earthquakes.Therefore,in order to propose an effective evaluation method for the running safety of trains during earthquakes,this study employs three indexes,namely lateral displacement of the wheel–rail contact point,wheel unloading rate,and wheel lift,to describe the lateral and vertical contact states between the wheel and rail.The corresponding evolution characteristics of the wheel–rail contact states are determined,and the derailment forms under different frequency components of seismic motion are identified through dynamic numerical simulations of the train–track coupled system under sine excitation.The variations in the wheel–rail contact states during the transition from a safe state to the critical state of derailment are analyzed,thereby constructing the evolutionary path of train derailment and seismic derailment risk domain.Lastly,the wheel–rail contact and derailment states under seismic conditions are analyzed,thus verifying the effectiveness of the evaluation method for assessing running safety under earthquakes proposed in this study.The results indicate that the assessment method based on the derailment risk domain accurately and comprehensively reflects the wheel–rail contact states under seismic conditions.It successfully determines the forms of train derailment,the risk levels of derailment,and the evolutionary paths of derailment risk.
基金This study was supported in part by the National Natural Science Foundation of China under Grant Nos.52278463,52208505,and 52202422.
文摘Investigations into the aerodynamic properties of vertical sound barriers exposed to high-speed operations employ computational fluid dynamics.The primary focus of this research is to evaluate the influence of train speed and the distance(D)from the track centerline under various operating conditions.The findings elucidate a marked elevation in the aerodynamic effect amplitude on sound barriers as train speeds increase.In single-train passages,the aerodynamic effect amplitude manifests a direct relationship with the square of the train speed.When two trains pass each other,the aerodynamic amplitude intensifies due to an additional aerodynamic increment on the sound barrier.This increment exhibits an approximate quadratic correlation with the retrograde train speed.Notably,the impact of high-speed trains on sound barrier aerodynamics surpasses that of low-speed trains,and this discrepancy amplifies with larger speed differentials between trains.Moreover,the train-induced aerodynamic effect diminishes significantly with greater distance(D),with occurrences of pressure coefficient(CP)exceeding the standard thresholds during dual-train passages.This study culminates in the formulation of universal equations for quantifying the influence of train speed and distance(D)on sound barrier aerodynamic characteristics across various operational scenarios.
基金supported by the National Natural Science Foundation of China (Grant No. 12302238)the National Key Research and Development Program of China (Grant Nos. 2021YFB3400701, 2022YFB3402904)。
文摘The dynamic load distribution within in-service axlebox bearings of high-speed trains is crucial for the fatigue reliability assessment and forward design of axlebox bearings. This paper presents an in situ measurement of the dynamic load distribution in the four rows of two axlebox bearings on a bogie wheelset of a high-speed train under polygonal wheel–rail excitation. The measurement employed an improved strain-based method to measure the dynamic radial load distribution of roller bearings. The four rows of two axlebox bearings on a wheelset exhibited different ranges of loaded zones and different means of distributed loads. Besides, the mean value and standard deviation of measured roller–raceway contact loads showed non-monotonic variations with the frequency of wheel–rail excitation. The fatigue life of the four bearing rows under polygonal wheel–rail excitation was quantitatively predicted by compiling the measured roller–raceway contact load spectra of the most loaded position and considering the load spectra as input.
基金supported by the National Natural Science Foundation of China (Grant No. 52072267)Shanghai Key Lab of Vehicle Aerodynamics and Vehicle Thermal Management Systems (Grant No. 23DZ2229029)
文摘Segregated incompressible large eddy simulation and acoustic perturbation equations were used to obtain the flow field and sound field of 1:25 scale trains with three,six and eight coaches in a long tunnel,and the aerodynamic results were verified by wind tunnel test with the same scale two-coach train model.Time-averaged drag coefficients of the head coach of three trains are similar,but at the tail coach of the multi-group trains it is much larger than that of the three-coach train.The eight-coach train presents the largest increment from the head coach to the tail coach in the standard deviation(STD)of aerodynamic force coefficients:0.0110 for drag coefficient(Cd),0.0198 for lift coefficient(Cl)and 0.0371 for side coef-ficient(Cs).Total sound pressure level at the bottom of multi-group trains presents a significant streamwise increase,which is different from the three-coach train.Tunnel walls affect the acoustic distribution at the bottom,only after the coach number reaches a certain value,and the streamwise increase in the sound pressure fluctuation of multi-group trains is strengthened by coach number.Fourier transform of the turbulent and sound pressures presents that coach number has little influence on the peak frequencies,but increases the sound pressure level values at the tail bogie cavities.Furthermore,different from the turbulent pressure,the first two sound pressure proper orthogonal decomposition(POD)modes in the bogie cavities contain 90%of the total energy,and the spatial distributions indicate that the acoustic distributions in the head and tail bogies are not related to coach number.
基金supported by the National Natural Science Foundationof China(62273029).
文摘Magnetic levitation control technology plays a significant role in maglev trains.Designing a controller for the levitation system is challenging due to the strong nonlinearity,open-loop instability,and the need for fast response and security.In this paper,we propose a Disturbance-Observe-based Tube Model Predictive Levitation Control(DO-TMPLC)scheme combined with a feedback linearization strategy for the levitation system.The proposed strategy incorporates state constraints and control input constraints,i.e.,the air gap,the vertical velocity,and the current applied to the coil.A feedback linearization strategy is used to cancel the nonlinearity of the tracking error system.Then,a disturbance observer is implemented to actively compensate for disturbances while a TMPLC controller is employed to alleviate the remaining disturbances.Furthermore,we analyze the recursive feasibility and input-to-state stability of the closed-loop system.The simulation results indicate the efficacy of the proposed control strategy.
基金supported by the National Key R&D Program of China(2021YFF0501101)the Youth Project of Hunan Provincial Department of Education(22B0586)the Education Reform Project of Hunan Provincial Department of Education(2022JGYB186).
文摘Multisensor data fusionmethod can improve the accuracy of bearing fault diagnosis,in order to address the problems of single-sensor data types and the insufficient exploration of redundancy and complementarity between different modal data in most existing multisensor data fusion methods for bearing fault diagnosis,a bearing fault diagnosis method based on a Multiple-Constraint Modal-Invariant Graph Convolutional Fusion Network(MCMI-GCFN)is proposed in this paper.Firstly,a Convolutional Autoencoder(CAE)and Squeeze-and-Excitation Block(SE block)are used to extract features of raw current and vibration signals.Secondly,the model introduces source domain classifiers and domain discriminators to capture modal invariance between different modal data based on domain adversarial training,making use of the redundancy and complementarity between multimodal data.Then,the spatial aggregation property of Graph Convolutional Neural Networks(GCN)is utilized to capture the dependency relationship between current and vibration modes with similar time step features for accurately fusing contextual semantic information.Finally,the validation is conducted on the public bearing damage current and vibration dataset from Paderborn University.The experimental results showed that the delivered fusion method achieved a bearing fault diagnosis accuracy of 99.6%,which was about 9%–11.4%better than that with nonfusion methods.