The complexity of signal controlled traffic largely stems from the various driving behaviors developed in response to the traffic signal. However, the existing models take a few driving behaviors into account and cons...The complexity of signal controlled traffic largely stems from the various driving behaviors developed in response to the traffic signal. However, the existing models take a few driving behaviors into account and consequently the traffic dynamics has not been completely explored. Therefore, a new cellular automaton model, which incorporates the driving behaviors typically manifesting during the different stages when the vehicles are moving toward a traffic light, is proposed in this paper. Numerical simulations have demonstrated that the proposed model can produce the spontaneous traffic breakdown and the dissolution of the over-saturated traffic phenomena. Furthermore, the simulation results indicate that the slow-to-start behavior and the inch-forward behavior can foster the traffic breakdown. Particularly, it has been discovered that the over-saturated traffic can be revised to be an under-saturated state when the slow-down behavior is activated after the spontaneous breakdown. Finally, the contributions of the driving behaviors on the traffic breakdown have been examined.展开更多
Road traffic congestion can inevitably de-grade road infrastructure and decrease travel efficiency in urban traffic networks,which can be relieved by employing appropriate congestion control.Accord-ing to different de...Road traffic congestion can inevitably de-grade road infrastructure and decrease travel efficiency in urban traffic networks,which can be relieved by employing appropriate congestion control.Accord-ing to different developmental driving forces,in this paper,the evolution of road traffic congestion control is divided into two stages.The ever-growing num-ber of advanced sensing techniques can be seen as the key driving force of the first stage,called the sens-ing stage,in which congestion control strategies ex-perienced rapid growth owing to the accessibility of traffic data.At the second stage,i.e.,the communica-tion stage,communication and computation capabil-ity can be regarded as the identifying symbols for this stage,where the ability of collecting finer-grained in-sight into transportation and mobility reality improves dramatically with advances in vehicular networks,Big Data,and artificial intelligence.Specifically,as the pre-requisite for congestion control,in this paper,ex-isting congestion detection techniques are first elab-orated and classified.Then,a comprehensive survey of the recent advances for current congestion control strategies with a focus on traffic signal control,vehi-cle route guidance,and their combined techniques is provided.In this regard,the evolution of these strate-gies with continuous development of sensing,com-munication,and computation capability are also intro-duced.Finally,the paper concludes with several re-search challenges and trends to fully promote the in-tegration of advanced techniques for traffic congestion mitigation in transportation systems.展开更多
基金supported by the National Basic Research Program of China(Grand No.2012CB723303)the Beijing Committee of Science and Technology,China(Grand No.Z1211000003120100)
文摘The complexity of signal controlled traffic largely stems from the various driving behaviors developed in response to the traffic signal. However, the existing models take a few driving behaviors into account and consequently the traffic dynamics has not been completely explored. Therefore, a new cellular automaton model, which incorporates the driving behaviors typically manifesting during the different stages when the vehicles are moving toward a traffic light, is proposed in this paper. Numerical simulations have demonstrated that the proposed model can produce the spontaneous traffic breakdown and the dissolution of the over-saturated traffic phenomena. Furthermore, the simulation results indicate that the slow-to-start behavior and the inch-forward behavior can foster the traffic breakdown. Particularly, it has been discovered that the over-saturated traffic can be revised to be an under-saturated state when the slow-down behavior is activated after the spontaneous breakdown. Finally, the contributions of the driving behaviors on the traffic breakdown have been examined.
基金the National Key R&D Program of China(2019YFB1600100)National Nat-ural Science Foundation of China(U1801266)the Youth Innovation Team of Shaanxi Universities.
文摘Road traffic congestion can inevitably de-grade road infrastructure and decrease travel efficiency in urban traffic networks,which can be relieved by employing appropriate congestion control.Accord-ing to different developmental driving forces,in this paper,the evolution of road traffic congestion control is divided into two stages.The ever-growing num-ber of advanced sensing techniques can be seen as the key driving force of the first stage,called the sens-ing stage,in which congestion control strategies ex-perienced rapid growth owing to the accessibility of traffic data.At the second stage,i.e.,the communica-tion stage,communication and computation capabil-ity can be regarded as the identifying symbols for this stage,where the ability of collecting finer-grained in-sight into transportation and mobility reality improves dramatically with advances in vehicular networks,Big Data,and artificial intelligence.Specifically,as the pre-requisite for congestion control,in this paper,ex-isting congestion detection techniques are first elab-orated and classified.Then,a comprehensive survey of the recent advances for current congestion control strategies with a focus on traffic signal control,vehi-cle route guidance,and their combined techniques is provided.In this regard,the evolution of these strate-gies with continuous development of sensing,com-munication,and computation capability are also intro-duced.Finally,the paper concludes with several re-search challenges and trends to fully promote the in-tegration of advanced techniques for traffic congestion mitigation in transportation systems.