With the rapid development of the 5G communications,the edge intelligence enables Internet of Vehicles(IoV)to provide traffic forecasting to alleviate traffic congestion and improve quality of experience of users simu...With the rapid development of the 5G communications,the edge intelligence enables Internet of Vehicles(IoV)to provide traffic forecasting to alleviate traffic congestion and improve quality of experience of users simultaneously.To enhance the forecasting performance,a novel edge-enabled probabilistic graph structure learning model(PGSLM)is proposed,which learns the graph structure and parameters by the edge sensing information and discrete probability distribution on the edges of the traffic road network.To obtain the spatio-temporal dependencies of traffic data,the learned dynamic graphs are combined with a predefined static graph to generate the graph convolution part of the recurrent graph convolution module.During the training process,a new graph training loss is introduced,which is composed of the K nearest neighbor(KNN)graph constructed by the traffic feature tensors and the graph structure.Detailed experimental results show that,compared with existing models,the proposed PGSLM improves the traffic prediction performance in terms of average absolute error and root mean square error in IoV.展开更多
为实现准确的机场流量短期预测,本文建立了基于二次分解方法的分解集成预测模型。首先,应用局部加权回归周期趋势分解(STL,seasonal and trend decomposition procedure based on Loess)算法将原始时间序列分解为趋势项、季节项和余项3...为实现准确的机场流量短期预测,本文建立了基于二次分解方法的分解集成预测模型。首先,应用局部加权回归周期趋势分解(STL,seasonal and trend decomposition procedure based on Loess)算法将原始时间序列分解为趋势项、季节项和余项3个分量,并计算其样本熵。其次,应用遗传算法(GA,genetic algorithm)优化变分模态分解(VMD,variational mode decomposition)参数,对熵值较大的分量进行二次分解。再次,使用极端梯度提升(XGBoost,extreme gradient boosting)对二次分解后的所有分量进行预测,采用加和集成得到最终的预测值。最后,采集国内典型机场实际运行数据进行实例分析。针对北京首都国际机场60 min进场、离场流量时序,本文模型预测的均等系数(EC,equal coefficient)值分别为0.9703、0.9959,相比其他常用模型均有所提高。此外,对于上海浦东、上海虹桥、广州白云3个大型国际机场,本文模型在60 min、30 min统计尺度下进场和离场流量预测的EC值均在0.9700以上,15 min统计尺度下预测的EC值均在0.9500以上。结果表明,本文建立的二次分解集成预测模型具有良好的准确性和普适性,用于机场流量短期预测是可行和有效的。展开更多
基金supported by the project of the National Natural Science Foundation of China(No.61772562)the Knowledge Innovation Program of Wuhan-Basic Research(No.2022010801010225)the Fundamental Research Funds for the Central Universities(No.2662022YJ012)。
文摘With the rapid development of the 5G communications,the edge intelligence enables Internet of Vehicles(IoV)to provide traffic forecasting to alleviate traffic congestion and improve quality of experience of users simultaneously.To enhance the forecasting performance,a novel edge-enabled probabilistic graph structure learning model(PGSLM)is proposed,which learns the graph structure and parameters by the edge sensing information and discrete probability distribution on the edges of the traffic road network.To obtain the spatio-temporal dependencies of traffic data,the learned dynamic graphs are combined with a predefined static graph to generate the graph convolution part of the recurrent graph convolution module.During the training process,a new graph training loss is introduced,which is composed of the K nearest neighbor(KNN)graph constructed by the traffic feature tensors and the graph structure.Detailed experimental results show that,compared with existing models,the proposed PGSLM improves the traffic prediction performance in terms of average absolute error and root mean square error in IoV.