期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Anomaly detection in traffic surveillance with sparse topic model 被引量:5
1
作者 XIA Li-min HU Xiang-jie WANG Jun 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第9期2245-2257,共13页
Most research on anomaly detection has focused on event that is different from its spatial-temporal neighboring events.It is still a significant challenge to detect anomalies that involve multiple normal events intera... Most research on anomaly detection has focused on event that is different from its spatial-temporal neighboring events.It is still a significant challenge to detect anomalies that involve multiple normal events interacting in an unusual pattern.In this work,a novel unsupervised method based on sparse topic model was proposed to capture motion patterns and detect anomalies in traffic surveillance.scale-invariant feature transform(SIFT)flow was used to improve the dense trajectory in order to extract interest points and the corresponding descriptors with less interference.For the purpose of strengthening the relationship of interest points on the same trajectory,the fisher kernel method was applied to obtain the representation of trajectory which was quantized into visual word.Then the sparse topic model was proposed to explore the latent motion patterns and achieve a sparse representation for the video scene.Finally,two anomaly detection algorithms were compared based on video clip detection and visual word analysis respectively.Experiments were conducted on QMUL Junction dataset and AVSS dataset.The results demonstrated the superior efficiency of the proposed method. 展开更多
关键词 motion pattern sparse topic model SIFT flow dense trajectory fisher kernel
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部