In this work, the extractive distillation with heat integration process is extended to separate the pressure-insensitive benzene-cyclohexane azeotrope by using furfural as the entrainer. The optimal design of extracti...In this work, the extractive distillation with heat integration process is extended to separate the pressure-insensitive benzene-cyclohexane azeotrope by using furfural as the entrainer. The optimal design of extractive distillation process is established to achieve minimum energy requirement using the multi-objective genetic algorithm, and the results show that energy saving for this heat integration process is 15.7%. Finally, the control design is performed to investigate the system's dynamic performance, and three control structures are studied. The pressure-compensated temperature control scheme is proposed based on the first two control structures, and the dynamic responses reveal that the feed disturbances in both flow rate and benzene composition can be mitigated well.展开更多
利用A SPEN PLU S流程模拟软件对丁二烯第一萃取精馏塔进行模拟计算,在此基础上进行操作变量对塔顶和塔釜关键组分的灵敏度分析,并对第一萃取精馏塔进行溶剂比优化,最后利用神经网络进行建模,预测不同C 4进料情况下的最佳溶剂比,并用于...利用A SPEN PLU S流程模拟软件对丁二烯第一萃取精馏塔进行模拟计算,在此基础上进行操作变量对塔顶和塔釜关键组分的灵敏度分析,并对第一萃取精馏塔进行溶剂比优化,最后利用神经网络进行建模,预测不同C 4进料情况下的最佳溶剂比,并用于指导生产。实际生产情况表明该方法是有效的。展开更多
基金supported by the National Natural Science Foundation of China(grant number 21476261)the Key Research and Development Plan Project of Shandong Province(grant number 2015GGX107004)
文摘In this work, the extractive distillation with heat integration process is extended to separate the pressure-insensitive benzene-cyclohexane azeotrope by using furfural as the entrainer. The optimal design of extractive distillation process is established to achieve minimum energy requirement using the multi-objective genetic algorithm, and the results show that energy saving for this heat integration process is 15.7%. Finally, the control design is performed to investigate the system's dynamic performance, and three control structures are studied. The pressure-compensated temperature control scheme is proposed based on the first two control structures, and the dynamic responses reveal that the feed disturbances in both flow rate and benzene composition can be mitigated well.