The pore structure images of ore particles located at different heights of leaching column were scanned with X-ray computerized tomography (CT) scanner, the porosity and pore size distribution were calculated and the ...The pore structure images of ore particles located at different heights of leaching column were scanned with X-ray computerized tomography (CT) scanner, the porosity and pore size distribution were calculated and the geometrical shape and connectivity of pores were analyzed based on image process method, and the three dimensional reconstruction of pore structure images was realized. The results show that the porosity of ore particles bed in leaching column is 42.92%, 41.72%, 39.34% at top, middle and bottom zone, respectively. Obviously it has spatial variability and decreases appreciably along the height of the column. The overall average porosity obtained by image processing is 41.33% while the porosity gotten from general measurement method in laboratory is 42.77% showing the results of both methods are consistent well. The pore structure of ore granular media is characterized as a dynamical space network composed of interconnected pore bodies and pore throats. The ratio of throats with equivalent diameter less than 1.91 mm to the total pores is 29.31%, and that of the large pores with equivalent diameter more than 5.73 mm is 2.90%.展开更多
The performances of repaired image depend on the local information in the repaired area and the consistency between the repair directions with structural content.Image repair algorithm with texture information perform...The performances of repaired image depend on the local information in the repaired area and the consistency between the repair directions with structural content.Image repair algorithm with texture information performs well in repairing seriously damaged images,but it has bad performances when the images have the abundant structure information.The dual optimization image repair algorithm based on the linear structure and the optimal texture is proposed.The algorithm uses the double-constraint sparse model to reconstruct the missed information in large area in order to improve the clarity of repaired images.After adopting the preference of Criminisi priority,the image repair algorithm of self-similarity characteristics is proposed to improve the fault and fuzzy distortion phenomena in the repaired image.The results show that the proposed algorithm has more clarity in the image texture and structure and better effectiveness,and the peak signal-to-noise ratio of the repaired images by proposed algorithm is superior to that by other algorithms.展开更多
This paper proposes a novel method for analyzing a textile fabric structure to extract positional information regarding each yarn using three-dimensional X-ray computed tomography(3D CT) image.Positional relationship ...This paper proposes a novel method for analyzing a textile fabric structure to extract positional information regarding each yarn using three-dimensional X-ray computed tomography(3D CT) image.Positional relationship among the yarns can be reconstructed using the extracted yarn positional information.In this paper,a sequence of points on the center line of each yarn of the sample is defined as the yarn positional information,since the sequence can be regarded as the representative position of the yarn.The sequence is extracted by tracing the yarn.The yarn is traced by estimating the yarn center and direction and correlating the yarn part of the 3D CT image with a 3D yarn model,which is moved along the estimated yarn direction.The trajectory of the center of the yarn model corresponds to the positional information of the yarn.The application of the proposed method is shown by experimentally applying the proposed method to a 3D CT image of a double-layered woven fabric.Furthermore,the experimental results for a plain knitted fabric show that this method can be applied to even knitted fabrics.展开更多
To compress screen image sequence in real-time remote and interactive applications,a novel compression method is proposed.The proposed method is named as CABHG.CABHG employs hybrid coding schemes that consist of intra...To compress screen image sequence in real-time remote and interactive applications,a novel compression method is proposed.The proposed method is named as CABHG.CABHG employs hybrid coding schemes that consist of intra-frame and inter-frame coding modes.The intra-frame coding is a rate-distortion optimized adaptive block size that can be also used for the compression of a single screen image.The inter-frame coding utilizes hierarchical group of pictures(GOP) structure to improve system performance during random accesses and fast-backward scans.Experimental results demonstrate that the proposed CABHG method has approximately 47%-48% higher compression ratio and 46%-53% lower CPU utilization than professional screen image sequence codecs such as TechSmith Ensharpen codec and Sorenson 3 codec.Compared with general video codecs such as H.264 codec,XviD MPEG-4 codec and Apple's Animation codec,CABHG also shows 87%-88% higher compression ratio and 64%-81% lower CPU utilization than these general video codecs.展开更多
Inverse synthetic aperture radar (ISAR) image can be represented and reconstructed by sparse recovery (SR) approaches. However, the existing SR algorithms, which are used for ISAR imaging, have suffered from high comp...Inverse synthetic aperture radar (ISAR) image can be represented and reconstructed by sparse recovery (SR) approaches. However, the existing SR algorithms, which are used for ISAR imaging, have suffered from high computational cost and poor imaging quality under a low signal to noise ratio (SNR) condition. This paper proposes a fast decoupled ISAR imaging method by exploiting the inherent structural sparse information of the targets. Firstly, the ISAR imaging problem is decoupled into two sub-problems. One is range direction imaging and the other is azimuth direction focusing. Secondly, an efficient two-stage SR method is proposed to obtain higher resolution range profiles by using jointly sparse information. Finally, the residual linear Bregman iteration via fast Fourier transforms (RLBI-FFT) is proposed to perform the azimuth focusing on low SNR efficiently. Theoretical analysis and simulation results show that the proposed method has better performence to efficiently implement higher-resolution ISAR imaging under the low SNR condition.展开更多
A high performance scalable image coding algorithm is proposed. The salient features of this algorithm are the ways to form and locate the significant clusters. Thanks to the list structure, the new coding algorithm a...A high performance scalable image coding algorithm is proposed. The salient features of this algorithm are the ways to form and locate the significant clusters. Thanks to the list structure, the new coding algorithm achieves fine fractional bit-plane coding with negligible additional complexity. Experiments show that it performs comparably or better than the state-of-the-art coders. Furthermore, the flexible codec supports both quality and resolution scalability, which is very attractive in many network applications.展开更多
A novel reconfigurable hardware system which uses both muhi-DSP and FPGA to attain high performance and real-time image processing are presented. The system structure and working principle of mainly processing multi-B...A novel reconfigurable hardware system which uses both muhi-DSP and FPGA to attain high performance and real-time image processing are presented. The system structure and working principle of mainly processing multi-BSP board, extended multi-DSP board are analysed. The outstanding advantage is that the communication among different board components of this system is supported by high speed link ports & serial ports for increasing the system performance and computational power. Then the implementation of embedded real-time operating systems (RTOS) by us is discussed in detail. In this system, we adopt two kinds of parallel structures controlled by RTOS for parallel processing of algorithms. The experimental results show that exploitive period of the system is short, and maintenance convenient. Thus it is suitable for real-time image processing and can get satisfactory effect of image recognition.展开更多
抽动秽语综合征(Gilles de la Tourette syndrome,GTS)属于儿童期神经发育障碍类疾病,少数病例延至成年期;GTS典型征象包括不自主运动及发声抽动,多伴随注意缺陷多动障碍等,严重影响患者生存质量。GTS起病多与皮质-纹状体-丘脑-皮质(cor...抽动秽语综合征(Gilles de la Tourette syndrome,GTS)属于儿童期神经发育障碍类疾病,少数病例延至成年期;GTS典型征象包括不自主运动及发声抽动,多伴随注意缺陷多动障碍等,严重影响患者生存质量。GTS起病多与皮质-纹状体-丘脑-皮质(cortico-striato-thalamo-cortical,CSTC)环路功能异常关联。目前,基于MRI对GTS发病、先兆冲动、抽动程度及社会认知诸方面的机制研究,已逐渐成为业内热点;结构和功能MRI对GTS感觉、运动、情感、认知等相关脑区的激活及网络改变,能够予以揭示。笔者围绕近年内基于体素形态学分析(voxel-based morphometry,VBM)、弥散张量成像(diffusion tensor imaging,DTI)、功能MRI(functional MRI,fMRI)、磁共振波谱(magnetic resonance spectroscopy,MRS)等不同模态成像的相关文献,进行归纳总结,为疾病早期识别及后续的深入探索提供帮助。展开更多
目的探讨抑郁障碍和双相障碍患者脑白质网络节点强度的差异,分析患者不同脑区的结构连接受损情况及其在鉴别中的作用。方法纳入91例基线诊断为抑郁发作的患者,经过≥9年的自然观察随访后,最终确定23例维持抑郁障碍诊断(单相组)和18例维...目的探讨抑郁障碍和双相障碍患者脑白质网络节点强度的差异,分析患者不同脑区的结构连接受损情况及其在鉴别中的作用。方法纳入91例基线诊断为抑郁发作的患者,经过≥9年的自然观察随访后,最终确定23例维持抑郁障碍诊断(单相组)和18例维持双相障碍诊断(双相组)的患者纳入分析。同时纳入30名健康对照者(对照组)。受试者在入组时均接受弥散张量成像扫描,采用确定性纤维追踪技术构建脑白质结构加权网络。比较三组间脑白质网络的节点连接强度差异,进一步采用受试者操作特征(receiver operator characteristic,ROC)曲线评估差异脑区对抑郁障碍和双相障碍鉴别诊断的价值。结果双相组在左前扣带回的节点强度较单相组降低(3.89±0.76 vs.4.74±0.60),在右尾状核(4.94±1.26 vs.3.46±0.99)、右苍白球(1.98±0.67 vs.1.25±0.29)的节点强度较单相组升高(P<0.01,FWE校正)。左前扣带回、右尾状核、右苍白球3个脑区的连接强度联合鉴别抑郁障碍和双相障碍绘制ROC曲线,曲线下面积(area under the curve,AUC)为0.95(95%CI:0.91~0.99;P<0.01),敏感度0.89,特异度0.87。结论脑结构网络的节点强度差异可以作为一个潜在的影像学生物标志物识别抑郁障碍和双相障碍,联合差异脑区的节点强度可以得到更好的识别率。展开更多
基金Project(2004CB619205) supported by the National Key Fundamental Research and Development Program of ChinaProject(50325415) supported by the National Science Fund for Distinguished Young ScholarsProject(50574099) supported by the National Natural Science Foundation of China
文摘The pore structure images of ore particles located at different heights of leaching column were scanned with X-ray computerized tomography (CT) scanner, the porosity and pore size distribution were calculated and the geometrical shape and connectivity of pores were analyzed based on image process method, and the three dimensional reconstruction of pore structure images was realized. The results show that the porosity of ore particles bed in leaching column is 42.92%, 41.72%, 39.34% at top, middle and bottom zone, respectively. Obviously it has spatial variability and decreases appreciably along the height of the column. The overall average porosity obtained by image processing is 41.33% while the porosity gotten from general measurement method in laboratory is 42.77% showing the results of both methods are consistent well. The pore structure of ore granular media is characterized as a dynamical space network composed of interconnected pore bodies and pore throats. The ratio of throats with equivalent diameter less than 1.91 mm to the total pores is 29.31%, and that of the large pores with equivalent diameter more than 5.73 mm is 2.90%.
基金Project(12GJ6055)supported by the Natural Science Foundation of Hunan Province,ChinaProject(2010FJ4107)supported by Hunan Provincial Science and Technology Department,China
文摘The performances of repaired image depend on the local information in the repaired area and the consistency between the repair directions with structural content.Image repair algorithm with texture information performs well in repairing seriously damaged images,but it has bad performances when the images have the abundant structure information.The dual optimization image repair algorithm based on the linear structure and the optimal texture is proposed.The algorithm uses the double-constraint sparse model to reconstruct the missed information in large area in order to improve the clarity of repaired images.After adopting the preference of Criminisi priority,the image repair algorithm of self-similarity characteristics is proposed to improve the fault and fuzzy distortion phenomena in the repaired image.The results show that the proposed algorithm has more clarity in the image texture and structure and better effectiveness,and the peak signal-to-noise ratio of the repaired images by proposed algorithm is superior to that by other algorithms.
基金Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science(2006-No.18800064)
文摘This paper proposes a novel method for analyzing a textile fabric structure to extract positional information regarding each yarn using three-dimensional X-ray computed tomography(3D CT) image.Positional relationship among the yarns can be reconstructed using the extracted yarn positional information.In this paper,a sequence of points on the center line of each yarn of the sample is defined as the yarn positional information,since the sequence can be regarded as the representative position of the yarn.The sequence is extracted by tracing the yarn.The yarn is traced by estimating the yarn center and direction and correlating the yarn part of the 3D CT image with a 3D yarn model,which is moved along the estimated yarn direction.The trajectory of the center of the yarn model corresponds to the positional information of the yarn.The application of the proposed method is shown by experimentally applying the proposed method to a 3D CT image of a double-layered woven fabric.Furthermore,the experimental results for a plain knitted fabric show that this method can be applied to even knitted fabrics.
基金Project(60873230) supported by the National Natural Science Foundation of China
文摘To compress screen image sequence in real-time remote and interactive applications,a novel compression method is proposed.The proposed method is named as CABHG.CABHG employs hybrid coding schemes that consist of intra-frame and inter-frame coding modes.The intra-frame coding is a rate-distortion optimized adaptive block size that can be also used for the compression of a single screen image.The inter-frame coding utilizes hierarchical group of pictures(GOP) structure to improve system performance during random accesses and fast-backward scans.Experimental results demonstrate that the proposed CABHG method has approximately 47%-48% higher compression ratio and 46%-53% lower CPU utilization than professional screen image sequence codecs such as TechSmith Ensharpen codec and Sorenson 3 codec.Compared with general video codecs such as H.264 codec,XviD MPEG-4 codec and Apple's Animation codec,CABHG also shows 87%-88% higher compression ratio and 64%-81% lower CPU utilization than these general video codecs.
基金supported by the National Natural Science Foundation of China(61671469)
文摘Inverse synthetic aperture radar (ISAR) image can be represented and reconstructed by sparse recovery (SR) approaches. However, the existing SR algorithms, which are used for ISAR imaging, have suffered from high computational cost and poor imaging quality under a low signal to noise ratio (SNR) condition. This paper proposes a fast decoupled ISAR imaging method by exploiting the inherent structural sparse information of the targets. Firstly, the ISAR imaging problem is decoupled into two sub-problems. One is range direction imaging and the other is azimuth direction focusing. Secondly, an efficient two-stage SR method is proposed to obtain higher resolution range profiles by using jointly sparse information. Finally, the residual linear Bregman iteration via fast Fourier transforms (RLBI-FFT) is proposed to perform the azimuth focusing on low SNR efficiently. Theoretical analysis and simulation results show that the proposed method has better performence to efficiently implement higher-resolution ISAR imaging under the low SNR condition.
文摘A high performance scalable image coding algorithm is proposed. The salient features of this algorithm are the ways to form and locate the significant clusters. Thanks to the list structure, the new coding algorithm achieves fine fractional bit-plane coding with negligible additional complexity. Experiments show that it performs comparably or better than the state-of-the-art coders. Furthermore, the flexible codec supports both quality and resolution scalability, which is very attractive in many network applications.
基金This project was supported by the National Natural Science Foundation of China(60135020) National Key Pre-researchProject of China(413010701 -3) .
文摘A novel reconfigurable hardware system which uses both muhi-DSP and FPGA to attain high performance and real-time image processing are presented. The system structure and working principle of mainly processing multi-BSP board, extended multi-DSP board are analysed. The outstanding advantage is that the communication among different board components of this system is supported by high speed link ports & serial ports for increasing the system performance and computational power. Then the implementation of embedded real-time operating systems (RTOS) by us is discussed in detail. In this system, we adopt two kinds of parallel structures controlled by RTOS for parallel processing of algorithms. The experimental results show that exploitive period of the system is short, and maintenance convenient. Thus it is suitable for real-time image processing and can get satisfactory effect of image recognition.
文摘目的探讨抑郁障碍和双相障碍患者脑白质网络节点强度的差异,分析患者不同脑区的结构连接受损情况及其在鉴别中的作用。方法纳入91例基线诊断为抑郁发作的患者,经过≥9年的自然观察随访后,最终确定23例维持抑郁障碍诊断(单相组)和18例维持双相障碍诊断(双相组)的患者纳入分析。同时纳入30名健康对照者(对照组)。受试者在入组时均接受弥散张量成像扫描,采用确定性纤维追踪技术构建脑白质结构加权网络。比较三组间脑白质网络的节点连接强度差异,进一步采用受试者操作特征(receiver operator characteristic,ROC)曲线评估差异脑区对抑郁障碍和双相障碍鉴别诊断的价值。结果双相组在左前扣带回的节点强度较单相组降低(3.89±0.76 vs.4.74±0.60),在右尾状核(4.94±1.26 vs.3.46±0.99)、右苍白球(1.98±0.67 vs.1.25±0.29)的节点强度较单相组升高(P<0.01,FWE校正)。左前扣带回、右尾状核、右苍白球3个脑区的连接强度联合鉴别抑郁障碍和双相障碍绘制ROC曲线,曲线下面积(area under the curve,AUC)为0.95(95%CI:0.91~0.99;P<0.01),敏感度0.89,特异度0.87。结论脑结构网络的节点强度差异可以作为一个潜在的影像学生物标志物识别抑郁障碍和双相障碍,联合差异脑区的节点强度可以得到更好的识别率。