密集场景下群株生菜的有效分割与参数获取是植物工厂生长监测中的关键环节。针对群株生菜中个体生菜鲜质量提取问题,该研究提出一种利用实例分割模型提取个体生菜点云,再以深度学习点云算法预测个体鲜质量的方法。该方法以群株生菜为研...密集场景下群株生菜的有效分割与参数获取是植物工厂生长监测中的关键环节。针对群株生菜中个体生菜鲜质量提取问题,该研究提出一种利用实例分割模型提取个体生菜点云,再以深度学习点云算法预测个体鲜质量的方法。该方法以群株生菜为研究对象,利用深度相机采集群株生菜俯视点云,将预处理后的点云数据输入实例分割模型Mask3D中训练,实现背景与生菜个体的实例分割,之后使用鲜质量预测网络预测个体生菜鲜质量。试验结果表明,该模型实现了个体生菜点云的分割提取,无多检和漏检的情况。当交并比(intersection over union,IoU)阈值为0.75时,群株生菜点云实例分割的精确度为0.924,高于其他实例分割模型;鲜质量预测网络实现了直接通过深度学习处理点云数据,预测个体生菜鲜质量的目的,预测结果的决定系数R2值为0.90,均方根误差值为12.42 g,优于从点云中提取特征量,再回归预测鲜质量的传统方法。研究结果表明该研究预测生菜鲜质量的精度较高,为利用俯视单面点云提取群株生菜中个体生菜表型参数提供了一种思路。展开更多
准确高效的麦粒计数对小麦育种和产量评估具有重要意义。传统人工计数方法费时费力且易出错。目前的自动计数方法主要基于二维图像处理技术,但在处理麦粒遮挡和获取立体形态特征方面存在局限。点云数据能够完整记录麦穗的三维几何结构,...准确高效的麦粒计数对小麦育种和产量评估具有重要意义。传统人工计数方法费时费力且易出错。目前的自动计数方法主要基于二维图像处理技术,但在处理麦粒遮挡和获取立体形态特征方面存在局限。点云数据能够完整记录麦穗的三维几何结构,为解决这些问题提供了新的思路。本文针对现有点云目标检测算法在处理密集分布麦粒时的不足,提出了一种改进的3DSSD网络用于麦穗点云中的麦粒检测与计数。该方法充分利用麦粒的形态学特征,设计了2个核心创新模块:一是提出局部形状感知采样策略(Local shape-aware sampling,LSAS),通过分析点云的局部几何结构来指导采样过程,有效缓解了传统最远点采样(Farthest point sampling,FPS)算法在密集目标场景下的特征退化问题;二是引入部件感知损失函数(Part-aware loss function,PALF),将麦粒建模为具有多个关键部位的目标,增强了网络对局部特征的感知能力。实验结果表明,改进后的方法在麦粒检测任务中AP@25达到72.68%,较基线3DSSD提升14.02%,计数任务MAE降至3.87,较3DSSD下降了85.54%,Recall提升至93.21%,从而在处理形态复杂、目标密集的麦穗点云时表现出显著优势。本研究为实现麦穗表型的快速、准确测量提供了新的技术方案,并成功地在马兰国家农业科技园区应用该方法。展开更多
文摘密集场景下群株生菜的有效分割与参数获取是植物工厂生长监测中的关键环节。针对群株生菜中个体生菜鲜质量提取问题,该研究提出一种利用实例分割模型提取个体生菜点云,再以深度学习点云算法预测个体鲜质量的方法。该方法以群株生菜为研究对象,利用深度相机采集群株生菜俯视点云,将预处理后的点云数据输入实例分割模型Mask3D中训练,实现背景与生菜个体的实例分割,之后使用鲜质量预测网络预测个体生菜鲜质量。试验结果表明,该模型实现了个体生菜点云的分割提取,无多检和漏检的情况。当交并比(intersection over union,IoU)阈值为0.75时,群株生菜点云实例分割的精确度为0.924,高于其他实例分割模型;鲜质量预测网络实现了直接通过深度学习处理点云数据,预测个体生菜鲜质量的目的,预测结果的决定系数R2值为0.90,均方根误差值为12.42 g,优于从点云中提取特征量,再回归预测鲜质量的传统方法。研究结果表明该研究预测生菜鲜质量的精度较高,为利用俯视单面点云提取群株生菜中个体生菜表型参数提供了一种思路。
文摘准确高效的麦粒计数对小麦育种和产量评估具有重要意义。传统人工计数方法费时费力且易出错。目前的自动计数方法主要基于二维图像处理技术,但在处理麦粒遮挡和获取立体形态特征方面存在局限。点云数据能够完整记录麦穗的三维几何结构,为解决这些问题提供了新的思路。本文针对现有点云目标检测算法在处理密集分布麦粒时的不足,提出了一种改进的3DSSD网络用于麦穗点云中的麦粒检测与计数。该方法充分利用麦粒的形态学特征,设计了2个核心创新模块:一是提出局部形状感知采样策略(Local shape-aware sampling,LSAS),通过分析点云的局部几何结构来指导采样过程,有效缓解了传统最远点采样(Farthest point sampling,FPS)算法在密集目标场景下的特征退化问题;二是引入部件感知损失函数(Part-aware loss function,PALF),将麦粒建模为具有多个关键部位的目标,增强了网络对局部特征的感知能力。实验结果表明,改进后的方法在麦粒检测任务中AP@25达到72.68%,较基线3DSSD提升14.02%,计数任务MAE降至3.87,较3DSSD下降了85.54%,Recall提升至93.21%,从而在处理形态复杂、目标密集的麦穗点云时表现出显著优势。本研究为实现麦穗表型的快速、准确测量提供了新的技术方案,并成功地在马兰国家农业科技园区应用该方法。