针对卷积神经网络在高光谱图像特征提取和分类的过程中,存在空谱特征提取不充分以及网络层数太多引起的参数量大、计算复杂的问题,提出快速三维卷积神经网络(3D-CNN)结合深度可分离卷积(DSC)的轻量型卷积模型。该方法首先利用增量主成...针对卷积神经网络在高光谱图像特征提取和分类的过程中,存在空谱特征提取不充分以及网络层数太多引起的参数量大、计算复杂的问题,提出快速三维卷积神经网络(3D-CNN)结合深度可分离卷积(DSC)的轻量型卷积模型。该方法首先利用增量主成分分析(IPCA)对输入的数据进行降维预处理;其次将输入模型的像素分割成小的重叠的三维小卷积块,在分割的小块上基于中心像素形成地面标签,利用三维核函数进行卷积处理,形成连续的三维特征图,保留空谱特征。用3D-CNN同时提取空谱特征,然后在三维卷积中加入深度可分离卷积对空间特征再次提取,丰富空谱特征的同时减少参数量,从而减少计算时间,分类精度也有所提高。所提模型在Indian Pines、Salinas Scene和University of Pavia公开数据集上验证,并且同其他经典的分类方法进行比较。实验结果表明,该方法不仅能大幅度节省可学习的参数,降低模型复杂度,而且表现出较好的分类性能,其中总体精度(OA)、平均分类精度(AA)和Kappa系数均可达99%以上。展开更多
As a key link in human-computer interaction,emotion recognition can enable robots to correctly perceive user emotions and provide dynamic and adjustable services according to the emotional needs of different users,whi...As a key link in human-computer interaction,emotion recognition can enable robots to correctly perceive user emotions and provide dynamic and adjustable services according to the emotional needs of different users,which is the key to improve the cognitive level of robot service.Emotion recognition based on facial expression and electrocardiogram has numerous industrial applications.First,three-dimensional convolutional neural network deep learning architecture is utilized to extract the spatial and temporal features from facial expression video data and electrocardiogram(ECG)data,and emotion classification is carried out.Then two modalities are fused in the data level and the decision level,respectively,and the emotion recognition results are then given.Finally,the emotion recognition results of single-modality and multi-modality are compared and analyzed.Through the comparative analysis of the experimental results of single-modality and multi-modality under the two fusion methods,it is concluded that the accuracy rate of multi-modal emotion recognition is greatly improved compared with that of single-modal emotion recognition,and decision-level fusion is easier to operate and more effective than data-level fusion.展开更多
文摘针对卷积神经网络在高光谱图像特征提取和分类的过程中,存在空谱特征提取不充分以及网络层数太多引起的参数量大、计算复杂的问题,提出快速三维卷积神经网络(3D-CNN)结合深度可分离卷积(DSC)的轻量型卷积模型。该方法首先利用增量主成分分析(IPCA)对输入的数据进行降维预处理;其次将输入模型的像素分割成小的重叠的三维小卷积块,在分割的小块上基于中心像素形成地面标签,利用三维核函数进行卷积处理,形成连续的三维特征图,保留空谱特征。用3D-CNN同时提取空谱特征,然后在三维卷积中加入深度可分离卷积对空间特征再次提取,丰富空谱特征的同时减少参数量,从而减少计算时间,分类精度也有所提高。所提模型在Indian Pines、Salinas Scene和University of Pavia公开数据集上验证,并且同其他经典的分类方法进行比较。实验结果表明,该方法不仅能大幅度节省可学习的参数,降低模型复杂度,而且表现出较好的分类性能,其中总体精度(OA)、平均分类精度(AA)和Kappa系数均可达99%以上。
基金supported by the Open Funding Project of National Key Laboratory of Human Factors Engineering(Grant NO.6142222190309)。
文摘As a key link in human-computer interaction,emotion recognition can enable robots to correctly perceive user emotions and provide dynamic and adjustable services according to the emotional needs of different users,which is the key to improve the cognitive level of robot service.Emotion recognition based on facial expression and electrocardiogram has numerous industrial applications.First,three-dimensional convolutional neural network deep learning architecture is utilized to extract the spatial and temporal features from facial expression video data and electrocardiogram(ECG)data,and emotion classification is carried out.Then two modalities are fused in the data level and the decision level,respectively,and the emotion recognition results are then given.Finally,the emotion recognition results of single-modality and multi-modality are compared and analyzed.Through the comparative analysis of the experimental results of single-modality and multi-modality under the two fusion methods,it is concluded that the accuracy rate of multi-modal emotion recognition is greatly improved compared with that of single-modal emotion recognition,and decision-level fusion is easier to operate and more effective than data-level fusion.