期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Development of vehicle-recognition method on water surfaces using LiDAR data:SPD^(2)(spherically stratified point projection with diameter and distance)
1
作者 Eon-ho Lee Hyeon Jun Jeon +2 位作者 Jinwoo Choi Hyun-Taek Choi Sejin Lee 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第6期95-104,共10页
Swarm robot systems are an important application of autonomous unmanned surface vehicles on water surfaces.For monitoring natural environments and conducting security activities within a certain range using a surface ... Swarm robot systems are an important application of autonomous unmanned surface vehicles on water surfaces.For monitoring natural environments and conducting security activities within a certain range using a surface vehicle,the swarm robot system is more efficient than the operation of a single object as the former can reduce cost and save time.It is necessary to detect adjacent surface obstacles robustly to operate a cluster of unmanned surface vehicles.For this purpose,a LiDAR(light detection and ranging)sensor is used as it can simultaneously obtain 3D information for all directions,relatively robustly and accurately,irrespective of the surrounding environmental conditions.Although the GPS(global-positioning-system)error range exists,obtaining measurements of the surface-vessel position can still ensure stability during platoon maneuvering.In this study,a three-layer convolutional neural network is applied to classify types of surface vehicles.The aim of this approach is to redefine the sparse 3D point cloud data as 2D image data with a connotative meaning and subsequently utilize this transformed data for object classification purposes.Hence,we have proposed a descriptor that converts the 3D point cloud data into 2D image data.To use this descriptor effectively,it is necessary to perform a clustering operation that separates the point clouds for each object.We developed voxel-based clustering for the point cloud clustering.Furthermore,using the descriptor,3D point cloud data can be converted into a 2D feature image,and the converted 2D image is provided as an input value to the network.We intend to verify the validity of the proposed 3D point cloud feature descriptor by using experimental data in the simulator.Furthermore,we explore the feasibility of real-time object classification within this framework. 展开更多
关键词 object classification Clustering 3d point cloud data LidAR(light detection and ranging) Surface vehicle
在线阅读 下载PDF
改进YOLOv5s的小目标烟雾火焰检测算法 被引量:35
2
作者 王一旭 肖小玲 +1 位作者 王鹏飞 向家富 《计算机工程与应用》 CSCD 北大核心 2023年第1期72-81,共10页
针对复杂环境中,烟雾火焰检测存在精度低,小目标检测困难等问题,提出一种改进的基于YOLOv5s的小目标烟雾火焰检测算法。基于公开数据集自建了9981张不相似的烟雾火焰图像数据集,解决现有数据集的限制,提高了模型的训练效率与泛化能力;... 针对复杂环境中,烟雾火焰检测存在精度低,小目标检测困难等问题,提出一种改进的基于YOLOv5s的小目标烟雾火焰检测算法。基于公开数据集自建了9981张不相似的烟雾火焰图像数据集,解决现有数据集的限制,提高了模型的训练效率与泛化能力;在网络中添加3-D注意力机制SimAM,增加算法的特征提取能力,而且没有增加额外的参数;修改网络中的Neck结构,将三尺度检测改为四尺度检测,并结合了加权双向特征金字塔网络(BiFPN)结构,对特征融合过程进行修改,提高小目标的检测能力与特征融合能力;通过遗传算法来优化网络中的部分超参数,进一步模型的检测能力。实验结果表明,改进后的算法比原始YOLOv5s算法平均检测精度提高了7.2%,同时对小目标检测精度更高,误检漏检等情况减少。 展开更多
关键词 烟雾检测 火焰检测 YOLOv5s 小目标检测 3-d注意力机制
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部