Intercepted signal blind separation is a research topic with high importance for both military and civilian communication systems. A blind separation method for space-time block code (STBC) systems is proposed by us...Intercepted signal blind separation is a research topic with high importance for both military and civilian communication systems. A blind separation method for space-time block code (STBC) systems is proposed by using the ordinary independent component analysis (ICA). This method cannot work when specific complex modulations are employed since the assumption of mutual independence cannot be satisfied. The analysis shows that source signals, which are group-wise independent and use multi-dimensional ICA (MICA) instead of ordinary ICA, can be applied in this case. Utilizing the block-diagonal structure of the cumulant matrices, the JADE algorithm is generalized to the multidimensional case to separate the received data into mutually independent groups. Compared with ordinary ICA algorithms, the proposed method does not introduce additional ambiguities. Simulations show that the proposed method overcomes the drawback and achieves a better performance without utilizing coding information than channel estimation based algorithms.展开更多
This paper addresses the problem of four-dimensional angle and Doppler frequency estimation for bistatic multiple-input multiple-output (MIMO) radar with arbitrary arrays in spatial co- lored noise. A novel method f...This paper addresses the problem of four-dimensional angle and Doppler frequency estimation for bistatic multiple-input multiple-output (MIMO) radar with arbitrary arrays in spatial co- lored noise. A novel method for joint estimation of Doppler fre- quency, two-dimensional (2D) direction of departure and 2D direc- tion of arrival based on the propagator method (PM) for arbitrary arrays is discussed. A special matrix is constructed to eliminate the influence of spatial colored noise. The four-dimensional (4D) angle and Doppler frequency are extracted from the matrix and the three- dimensional (3D) coordinates of the targets are then calculated on the basis of these angles. The proposed algorithm provides a lower computational complexity and has a parameter estimation very close to that of the ESPRIT algorithm and the DOA-matrix al- gorithm in the high signal to noise ratio and the Cramer-Rao bound (CRB) is given. Furthermore, multi-dimensional parameters can be automatically paired by this algorithm to avoid performance degra- dation resulting from wrong pairing. Simulation results demonstrate the effectiveness of the proposed method.展开更多
该文研究了机载多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达杂波抑制的收发联合降维空时自适应处理(Space Time Adaptive Processing,STAP)算法统一理论框架。首先,基于机载MIMO雷达发射波形分集的特性,构建了机载MIMO雷达...该文研究了机载多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达杂波抑制的收发联合降维空时自适应处理(Space Time Adaptive Processing,STAP)算法统一理论框架。首先,基于机载MIMO雷达发射波形分集的特性,构建了机载MIMO雷达降维联合自适应STAP处理的统一理论框架结构。在此基础上,建立了3种降维STAP处理结构。最后,针对上述3种降维结构,给出了相应的3类适用于MIMO体制的降维STAP处理算法。仿真实验表明:机载MIMO雷达联合降维自适应算法具有较好的杂波抑制性能和较强的抗干扰能力。展开更多
针对单基地多输入多输出(multiple input multiple output,MIMO)雷达波达方向(direction of arrival,DOA)估计问题,该文提出一种低复杂度的实值求根多重信号分类(multiple signal classification,MUSIC)方法。该方法首先通过降维变换降...针对单基地多输入多输出(multiple input multiple output,MIMO)雷达波达方向(direction of arrival,DOA)估计问题,该文提出一种低复杂度的实值求根多重信号分类(multiple signal classification,MUSIC)方法。该方法首先通过降维变换降低接收数据的维数,利用酉变换将复值数据协方差矩阵实值化,然后构造基于酉MUSIC的求根多项式,采用保角映射将复系数多项式映射为实系数多项式,最后通过求解该实系数多项式的根来得到目标的DOA估计。该方法不需要进行谱峰搜索,所涉及的特征值分解和多项式求根运算均只在实数域进行,在大大降低算法运算复杂度的同时可以获得更好的角度估计性能。仿真结果验证了所提算法的有效性。展开更多
基金supported by the National Natural Science Foundation of China (61201282)
文摘Intercepted signal blind separation is a research topic with high importance for both military and civilian communication systems. A blind separation method for space-time block code (STBC) systems is proposed by using the ordinary independent component analysis (ICA). This method cannot work when specific complex modulations are employed since the assumption of mutual independence cannot be satisfied. The analysis shows that source signals, which are group-wise independent and use multi-dimensional ICA (MICA) instead of ordinary ICA, can be applied in this case. Utilizing the block-diagonal structure of the cumulant matrices, the JADE algorithm is generalized to the multidimensional case to separate the received data into mutually independent groups. Compared with ordinary ICA algorithms, the proposed method does not introduce additional ambiguities. Simulations show that the proposed method overcomes the drawback and achieves a better performance without utilizing coding information than channel estimation based algorithms.
基金supported by the National Natural Science Foundation of China(6137116961179006)+1 种基金the Jiangsu Postdoctoral Research Funding Plan(1301013B)the Nanjing University of Aeronautics and Astronautics Funding(NZ2013208)
文摘This paper addresses the problem of four-dimensional angle and Doppler frequency estimation for bistatic multiple-input multiple-output (MIMO) radar with arbitrary arrays in spatial co- lored noise. A novel method for joint estimation of Doppler fre- quency, two-dimensional (2D) direction of departure and 2D direc- tion of arrival based on the propagator method (PM) for arbitrary arrays is discussed. A special matrix is constructed to eliminate the influence of spatial colored noise. The four-dimensional (4D) angle and Doppler frequency are extracted from the matrix and the three- dimensional (3D) coordinates of the targets are then calculated on the basis of these angles. The proposed algorithm provides a lower computational complexity and has a parameter estimation very close to that of the ESPRIT algorithm and the DOA-matrix al- gorithm in the high signal to noise ratio and the Cramer-Rao bound (CRB) is given. Furthermore, multi-dimensional parameters can be automatically paired by this algorithm to avoid performance degra- dation resulting from wrong pairing. Simulation results demonstrate the effectiveness of the proposed method.
文摘该文研究了机载多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达杂波抑制的收发联合降维空时自适应处理(Space Time Adaptive Processing,STAP)算法统一理论框架。首先,基于机载MIMO雷达发射波形分集的特性,构建了机载MIMO雷达降维联合自适应STAP处理的统一理论框架结构。在此基础上,建立了3种降维STAP处理结构。最后,针对上述3种降维结构,给出了相应的3类适用于MIMO体制的降维STAP处理算法。仿真实验表明:机载MIMO雷达联合降维自适应算法具有较好的杂波抑制性能和较强的抗干扰能力。
文摘研究单基地十字阵多输入多输出(multiple-input multiple-output,MIMO)雷达中目标二维角度参数估计的问题。已有的算法往往忽略了信源矩阵中的类Vandermonde结构,而这种特殊的结构可以提升参数估计精度。基于均匀线形阵列(uniform linear array,ULA)的中心对称特性和目标参数矩阵中的类Vandermonde结构,提出一种基于改进的三线性分解的二维角度估计算法。首先利用酉变换的方法构造阵列增广输出矩阵,再将二维角度估计与三线性模型相联系。由于增广输出使得阵列的虚拟孔径增大,因而本文所提算法的参数估计精度要优于传统三线性估计算法。此外,本文提及的改进算法不需进行谱峰搜索及奇异值分解,并且能对估计的二维目标角度自动配对,最后的仿真结果验证了本文算法的有效性。
文摘针对单基地多输入多输出(multiple input multiple output,MIMO)雷达波达方向(direction of arrival,DOA)估计问题,该文提出一种低复杂度的实值求根多重信号分类(multiple signal classification,MUSIC)方法。该方法首先通过降维变换降低接收数据的维数,利用酉变换将复值数据协方差矩阵实值化,然后构造基于酉MUSIC的求根多项式,采用保角映射将复系数多项式映射为实系数多项式,最后通过求解该实系数多项式的根来得到目标的DOA估计。该方法不需要进行谱峰搜索,所涉及的特征值分解和多项式求根运算均只在实数域进行,在大大降低算法运算复杂度的同时可以获得更好的角度估计性能。仿真结果验证了所提算法的有效性。