期刊文献+
共找到76,675篇文章
< 1 2 250 >
每页显示 20 50 100
Thermal–hydraulic analysis of space nuclear reactor TOPAZ-Ⅱ with modified RELAP5 被引量:5
1
作者 Cheng-Long Wang Tian-Cai Liu +3 位作者 Si-Miao Tang Wen-Xi Tian Sui-Zheng Qiu Guang-Hui Su 《Nuclear Science and Techniques》 SCIE CAS CSCD 2019年第1期121-131,共11页
With the advantages of high reliability, power density, and long life, nuclear power reactors have become a promising option for space power. In this study, the Reactor Excursion and Leak Analysis Program 5(RELAP5), w... With the advantages of high reliability, power density, and long life, nuclear power reactors have become a promising option for space power. In this study, the Reactor Excursion and Leak Analysis Program 5(RELAP5), with the implementation of sodium–potassium eutectic alloy(NaK-78) properties and heat transfer correlations, is adopted to analyze the thermal–hydraulic characteristics of the space nuclear reactor TOPAZ-Ⅱ.A RELAP5 model including thermionic fuel elements(TFEs), reactor core, radiator, coolant loop, and volume accumulator is established. The temperature reactivity feedback effects of the fuel, TFE emitter, TFE collector,moderator, and reactivity insertion effects of the control drums and safety drums are considered. To benchmark the integrated TOPAZ-Ⅱ system model, an electrical ground test of the fully integrated TOPAZ-Ⅱ system, the V-71 unit,is simulated and analyzed. The calculated coolant temperature and system pressure are in acceptable agreement with the experimental data for the maximum relative errors of 8 and 10%, respectively. The detailed thermal–hydraulic characteristics of TOPAZ-Ⅱ are then simulated and analyzed at the steady state. The calculation results agree well with the design values. The current work provides a solid foundation for space reactor design and transient analysis in the future. 展开更多
关键词 SPACE nuclear REACTOR TOPAZ-Ⅱ thermal–hydraulic analysis RELAP5 modification
在线阅读 下载PDF
A thermal–hydraulic model for the graphite-moderated channel-type molten salt reactor
2
作者 Long He Jia-Jie Shen Xiang-Zhou Cai 《Nuclear Science and Techniques》 2025年第4期233-243,共11页
A thermal–hydraulic model was developed to analyze the three-dimensional(3D)temperature field of a graphite-moderated channel-type molten salt reactor(GMC-MSR).This model solves the temperature distribution of both t... A thermal–hydraulic model was developed to analyze the three-dimensional(3D)temperature field of a graphite-moderated channel-type molten salt reactor(GMC-MSR).This model solves the temperature distribution of both the graphite moderator and fuel salt using a single convection–diffusion equation.Heat transfer at the interface between the fuel salt and graphite was addressed by introducing an additional thermal resistance component at the interface and modifying the anisotropic thermal conductivity of the fuel salt.The mass flow distribution in different flow passages was determined by adjusting the mass flow rate until a uniform pressure drop was achieved across all fuel channels.This thermal–hydraulic model,constructed on COMSOL Multiphysics,was verified by comparing its temperature results with those from the RELAP5 code across two demonstration cases.A steady-state thermal–hydraulic simulation of this model was performed to evaluate the conceptual design of a 2-MW experimental molten salt reactor(2MW-MSR).In addition,detailed discussions of the 3D temperature field,heat flux,and mass flow distribution of the 2MW-MSR were presented.This model allows for a comprehensive 3D thermal–hydraulic analysis of the GMC-MSR.Moreover,it only requires the solution of a single convection–diffusion equation,which makes it invaluable for GMC-MSR design. 展开更多
关键词 Molten salt reactor thermal–hydraulic analysis thermal coupling
在线阅读 下载PDF
Thermal hydraulic characteristics of helical coil once-through steam generator under ocean conditions 被引量:3
3
作者 Tian-Ze Bai Chang-Hong Peng 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2022年第10期139-150,共12页
Owing to its advantages of high heat transfer efficiency and compactness, the helical coil once-through steam generator(HCOTSG) can be used in floating nuclear power plants and has been widely used in the design of sm... Owing to its advantages of high heat transfer efficiency and compactness, the helical coil once-through steam generator(HCOTSG) can be used in floating nuclear power plants and has been widely used in the design of small modular reactors. The helical tubular geometric structure of the HCOTSG allows heat transfer and local flow changes to occur under complex ocean conditions. In this study, theoretical models of ocean conditions are added to the RELAP5/MOD3.3 code and verified. Using the modified RELAP5 code, the thermal–hydraulic characteristics of the HCOTSG under ocean conditions are simulated. The results show that under rolling conditions, the flow oscillation amplitudes of the single liquid-phase, twophase flow, and single gas-phase regions are different. A circular change in the horizontal position of the helical tube causes the fluctuation of the parameters to change periodically. A phase difference of approximately 3.9 s at a flow rate of 23 kg/s is observed in the flow fluctuation along the axial direction. The driving force, period, and amplitude of rolling significantly affect the flow fluctuation in the HCOTSG. In natural circulation, the flow in the HCOTSG is complex, and the primary-side flow fluctuation can reduce the trough of the flow oscillation at the helical tube by approximately 24.3%. 展开更多
关键词 RELAP5 HCOTSG Ocean conditions thermal–hydraulic analysis Flow oscillation
在线阅读 下载PDF
NUMERICAL PREDICTION OF AIRCRAFT HYDRAULIC SYSTEM BASED ON THERMAL DYNAMIC ANALYSIS
4
作者 苏向辉 许锋 昂海松 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2003年第2期159-164,共6页
A mathematical model of principal elements of the aircraft hydraulic system is presented based on the heat transfer theory. The dynamic heat transfer process of the hydraulic oil and the pump shells within an aircraft... A mathematical model of principal elements of the aircraft hydraulic system is presented based on the heat transfer theory. The dynamic heat transfer process of the hydraulic oil and the pump shells within an aircraft hydraulic system are analyzed by the difference method. A kind of means for the prediction to variational trends of the aircraft hydraulic system temperature is provided during operation. The numerical prediction and simulation under the operational conditions are presented for ground trial running and the decelerated operation in flight. Computational results show that there is a good coincidence between the experimental data and the numerical predictions. 展开更多
关键词 hydraulic system head loss thermal dynamic analysis numerical prediction
在线阅读 下载PDF
A review of reservoir damage during hydraulic fracturing of deep and ultra-deep reservoirs 被引量:3
5
作者 Kun Zhang Xiong-Fei Liu +6 位作者 Dao-Bing Wang Bo Zheng Tun-Hao Chen Qing Wang Hao Bai Er-Dong Yao Fu-Jian Zhou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期384-409,共26页
Deep and ultra-deep reservoirs have gradually become the primary focus of hydrocarbon exploration as a result of a series of significant discoveries in deep hydrocarbon exploration worldwide.These reservoirs present u... Deep and ultra-deep reservoirs have gradually become the primary focus of hydrocarbon exploration as a result of a series of significant discoveries in deep hydrocarbon exploration worldwide.These reservoirs present unique challenges due to their deep burial depth(4500-8882 m),low matrix permeability,complex crustal stress conditions,high temperature and pressure(HTHP,150-200℃,105-155 MPa),coupled with high salinity of formation water.Consequently,the costs associated with their exploitation and development are exceptionally high.In deep and ultra-deep reservoirs,hydraulic fracturing is commonly used to achieve high and stable production.During hydraulic fracturing,a substantial volume of fluid is injected into the reservoir.However,statistical analysis reveals that the flowback rate is typically less than 30%,leaving the majority of the fluid trapped within the reservoir.Therefore,hydraulic fracturing in deep reservoirs not only enhances the reservoir permeability by creating artificial fractures but also damages reservoirs due to the fracturing fluids involved.The challenging“three-high”environment of a deep reservoir,characterized by high temperature,high pressure,and high salinity,exacerbates conventional forms of damage,including water sensitivity,retention of fracturing fluids,rock creep,and proppant breakage.In addition,specific damage mechanisms come into play,such as fracturing fluid decomposition at elevated temperatures and proppant diagenetic reactions at HTHP conditions.Presently,the foremost concern in deep oil and gas development lies in effectively assessing the damage inflicted on these reservoirs by hydraulic fracturing,comprehending the underlying mechanisms,and selecting appropriate solutions.It's noteworthy that the majority of existing studies on reservoir damage primarily focus on conventional reservoirs,with limited attention given to deep reservoirs and a lack of systematic summaries.In light of this,our approach entails initially summarizing the current knowledge pertaining to the types of fracturing fluids employed in deep and ultra-deep reservoirs.Subsequently,we delve into a systematic examination of the damage processes and mechanisms caused by fracturing fluids within the context of hydraulic fracturing in deep reservoirs,taking into account the unique reservoir characteristics of high temperature,high pressure,and high in-situ stress.In addition,we provide an overview of research progress related to high-temperature deep reservoir fracturing fluid and the damage of aqueous fracturing fluids to rock matrix,both artificial and natural fractures,and sand-packed fractures.We conclude by offering a summary of current research advancements and future directions,which hold significant potential for facilitating the efficient development of deep oil and gas reservoirs while effectively mitigating reservoir damage. 展开更多
关键词 Artificial fracture Deep and ultra-deep reservoir Fracture conductivity Fracturing fluid hydraulic fracturing Reservoir damage
在线阅读 下载PDF
Estimation of the anisotropy of hydraulic conductivity through 3D fracture networks using the directional geological entropy 被引量:1
6
作者 Chuangbing Zhou Zuyang Ye +2 位作者 Chi Yao Xincheng Fan Feng Xiong 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第2期137-148,共12页
With an extension of the geological entropy concept in porous media,the approach called directional entrogram is applied to link hydraulic behavior to the anisotropy of the 3D fracture networks.A metric called directi... With an extension of the geological entropy concept in porous media,the approach called directional entrogram is applied to link hydraulic behavior to the anisotropy of the 3D fracture networks.A metric called directional entropic scale is used to measure the anisotropy of spatial order in different directions.Compared with the traditional connectivity indexes based on the statistics of fracture geometry,the directional entropic scale is capable to quantify the anisotropy of connectivity and hydraulic conductivity in heterogeneous 3D fracture networks.According to the numerical analysis of directional entrogram and fluid flow in a number of the 3D fracture networks,the hydraulic conductivities and entropic scales in different directions both increase with spatial order(i.e.,trace length decreasing and spacing increasing)and are independent of the dip angle.As a result,the nonlinear correlation between the hydraulic conductivities and entropic scales from different directions can be unified as quadratic polynomial function,which can shed light on the anisotropic effect of spatial order and global entropy on the heterogeneous hydraulic behaviors. 展开更多
关键词 3D fracture network Geological entropy Directional entropic scale ANISOTROPY hydraulic conductivity
在线阅读 下载PDF
Extreme massive hydraulic fracturing in deep coalbed methane horizontal wells:A case study of the Linxing Block,eastern Ordos Basin,NW China 被引量:2
7
作者 YANG Fan LI Bin +3 位作者 WANG Kunjian WEN Heng YANG Ruiyue HUANG Zhongwei 《Petroleum Exploration and Development》 SCIE 2024年第2期440-452,共13页
Deep coal seams show low permeability,low elastic modulus,high Poisson’s ratio,strong plasticity,high fracture initiation pressure,difficulty in fracture extension,and difficulty in proppants addition.We proposed the... Deep coal seams show low permeability,low elastic modulus,high Poisson’s ratio,strong plasticity,high fracture initiation pressure,difficulty in fracture extension,and difficulty in proppants addition.We proposed the concept of large-scale stimulation by fracture network,balanced propagation and effective support of fracture network in fracturing design and developed the extreme massive hydraulic fracturing technique for deep coalbed methane(CBM)horizontal wells.This technique involves massive injection with high pumping rate+high-intensity proppant injection+perforation with equal apertures and limited flow+temporary plugging and diverting fractures+slick water with integrated variable viscosity+graded proppants with multiple sizes.The technique was applied in the pioneering test of a multi-stage fracturing horizontal well in deep CBM of Linxing Block,eastern margin of the Ordos Basin.The injection flow rate is 18 m^(3)/min,proppant intensity is 2.1 m^(3)/m,and fracturing fluid intensity is 16.5 m^(3)/m.After fracturing,a complex fracture network was formed,with an average fracture length of 205 m.The stimulated reservoir volume was 1987×10^(4)m^(3),and the peak gas production rate reached 6.0×10^(4)m^(3)/d,which achieved efficient development of deep CBM. 展开更多
关键词 deep coalbed methane extreme massive hydraulic fracturing fracture network graded proppants slick water with variable viscosity Ordos Basin
在线阅读 下载PDF
Implications for fault reactivation and seismicity induced by hydraulic fracturing 被引量:1
8
作者 Zi-Han Sun Ming-Guang Che +3 位作者 Li-Hong Zhu Shu-Juan Zhang Ji-Yuan Lu Chang-Yu Jin 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1081-1098,共18页
Evaluating the physical mechanisms that link hydraulic fracturing(HF) operations to induced earthquakes and the anticipated form of the resulting events is significant in informing subsurface fluid injection operation... Evaluating the physical mechanisms that link hydraulic fracturing(HF) operations to induced earthquakes and the anticipated form of the resulting events is significant in informing subsurface fluid injection operations. Current understanding supports the overriding role of the effective stress magnitude in triggering earthquakes, while the impact of change rate of effective stress has not been systematically addressed. In this work, a modified critical stiffness was brought up to investigate the likelihood, impact,and mitigation of induced seismicity during and after hydraulic fracturing by developing a poroelastic model based on rate-and-state fraction law and linear stability analysis. In the new criterion, the change rate of effective stress was considered a key variable to explore the evolution of this criterion and hence the likelihood of instability slip of fault. A coupled fluid flow-deformation model was used to represent the entire hydraulic fracturing process in COMSOL Multiphysics. The possibility of triggering an earthquake throughout the entire hydraulic fracturing process, from fracturing to cessation, was investigated considering different fault locations, orientations, and positions along the fault. The competition between the effects of the magnitude and change rate of effective stress was notable at each fracturing stage. The effective stress magnitude is a significant controlling factor during fracturing events, with the change rate dominating when fracturing is suddenly started or stopped. Instability dominates when the magnitude of the effective stress increases(constant injection at each fracturing stage) and the change rate of effective stress decreases(the injection process is suddenly stopped). Fracturing with a high injection rate, a fault adjacent to the hydraulic fracturing location and the position of the junction between the reservoir and fault are important to reduce the Coulomb failure stress(CFS) and enhance the critical stiffness as the significant disturbance of stresses at these positions in the coupled process. Therefore,notable attention should be given to the injection rate during fracturing, fault position, and position along faults as important considerations to help reduce the potential for induced seismicity. Our model was verified and confirmed using the case of the Longmaxi Formation in the Sichuan Basin, China, in which the reported microseismic data were correlated with high critical stiffness values. This work supplies new thoughts of the seismic risk associated with HF engineering. 展开更多
关键词 hydraulic fracturing Coulomb failure stress Rate-and-state fraction model Linear stability analysis Critical stiffness Seismically induced fault
在线阅读 下载PDF
Core and blanket thermal-hydraulic analysis of a molten salt fast reactor based on coupling of OpenMC and OpenFOAM 被引量:8
9
作者 Bin Deng Yong Cui +5 位作者 Jin-Gen Chen Long He Shao-Peng Xia Cheng-Gang Yu Fan Zhu Xiang-Zhou Cai 《Nuclear Science and Techniques》 SCIE CAS CSCD 2020年第9期1-15,共15页
In the core of a molten salt fast reactor(MSFR),heavy metal fuel and fission products can be dissolved in a molten fluoride salt to form a eutectic mixture that acts as both fuel and coolant.Fission energy is released... In the core of a molten salt fast reactor(MSFR),heavy metal fuel and fission products can be dissolved in a molten fluoride salt to form a eutectic mixture that acts as both fuel and coolant.Fission energy is released from the fuel salt and transferred to the second loop by fuel salt circulation.Therefore,the MSFR is characterized by strong interaction between the neutronics and the thermal hydraulics.Moreover,recirculation flow occurs,and nuclear heat is accumulated near the fertile blanket,which significantly affects both the flow and the temperature fields in the core.In this work,to further optimize the conceptual geometric design of the MSFR,three geometries of the core and fertile blanket are proposed,and the thermal-hydraulic characteristics,including the three-dimensional flow and temperature fields of the fuel and fertile salts,are simulated and analyzed using a coupling scheme between the open source codes OpenMC and OpenFOAM.The numerical results indicate that a flatter core temperature distribution can be obtained and the hot spot and flow stagnation zones that appear in the upper and lower parts of the core center near the reflector can be eliminated by curving both the top and bottom walls of the core.Moreover,eight cooling loops with a total flow rate of0.0555 m3 s-1 ensur an acceptable temperature distribusure an acceptable temperature distribution in the fertile blanket. 展开更多
关键词 Molten salt fast reactor Core and blanket thermal-hydraulic analysis Neutronics and thermal hydraulics coupling
在线阅读 下载PDF
Thermal Analysis of Vehicular Twin-Tube Hydraulic Gas-Precharged Shock Absorbers 被引量:5
10
作者 么鸣涛 顾亮 管继富 《Journal of Beijing Institute of Technology》 EI CAS 2010年第3期286-292,共7页
In this study of temperature rising in vehicular twin-tube hydraulic gas-precharged shock absorbers,thermodynamic analyses were conducted via simulations.Equations on heat conduction,heat convection as well as radiati... In this study of temperature rising in vehicular twin-tube hydraulic gas-precharged shock absorbers,thermodynamic analyses were conducted via simulations.Equations on heat conduction,heat convection as well as radiation were derived by applying certain laws governing heat transfer;an equivalent thermal resistance network model of a shock absorber undergoing heat transfer was established innovatively;moreover,the shock absorber’s thermodynamic model of control volume system was built by using the first law of thermodynamics;and finally,time required for shock absorber to reach thermal equilibrium and corresponding value of steady temperature were calculated by programming.In this way,a lower thermal equilibrium temperature will be achieved,hence help to improve reliability of shock absorbers in work by offering low ambient temperature,by reducing amplitudes and frequencies of external incentives exerted on them and by increasing flow rate of ambient air passing around them. 展开更多
关键词 shock absorber thermal resistance network model thermodynamic model thermal equilibrium
在线阅读 下载PDF
Thermal Hydraulic Design and Analysis of a Water-Cooled Ceramic Breeder Blanket with Superheated Steam for CFETR 被引量:1
11
作者 成晓曼 马学斌 +3 位作者 蒋科成 陈磊 黄凯 刘松林 《Plasma Science and Technology》 SCIE EI CAS CSCD 2015年第9期787-791,共5页
The water-cooled ceramic breeder blanket(WCCB) is one of the blanket candidates for China fusion engineering test reactor(CFETR).In order to improve power generation efficiency and tritium breeding ratio,WCCB with... The water-cooled ceramic breeder blanket(WCCB) is one of the blanket candidates for China fusion engineering test reactor(CFETR).In order to improve power generation efficiency and tritium breeding ratio,WCCB with superheated steam is under development.The thermal-hydraulic design is the key to achieve the purpose of safe heat removal and efficient power generation under normal and partial loading operation conditions.In this paper,the coolant flow scheme was designed and one self-developed analytical program was developed,based on a theoretical heat transfer model and empirical correlations.Employing this program,the design and analysis of related thermal-hydraulic parameters were performed under different fusion power conditions.The results indicated that the superheated steam water-cooled blanket is feasible. 展开更多
关键词 thermal hydraulic WCCB superheated steam
在线阅读 下载PDF
Hydraulic fracturing behaviors of shale under coupled stress and temperature conditions simulating different burial depths
12
作者 Qin Zhou Zheming Zhu +6 位作者 Wei Liu Huijun Lu Zidong Fan Xiaofang Nie Cunbao Li Jun Wang Li Ren 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第6期783-797,共15页
Fracture propagation in shale under in situ conditions is a critical but poorly understood mechanical process in hydraulic fracturing for deep shale gas reservoirs. To address this, hydraulic fracturing experiments we... Fracture propagation in shale under in situ conditions is a critical but poorly understood mechanical process in hydraulic fracturing for deep shale gas reservoirs. To address this, hydraulic fracturing experiments were conducted on hollow double-wing crack specimens of the Longmaxi shale under conditions simulating the ground surface(confining pressure σ_(cp)=0, room temperature(Tr)) and at depths of 1600 m(σ_(cp)=40 MPa, Ti=70 ℃) and 3300 m(σ_(cp)=80 MPa, high temperature Ti=110 ℃) in the study area.High in situ stress was found to significantly increase fracture toughness through constrained microcracking and particle frictional bridging mechanisms. Increasing the temperature enhances rather than weakens the fracture resistance because it increases the grain debonding length, which dissipates more plastic energy and enlarges grains to close microdefects and generate compressive stress to inhibit microcracking. Interestingly, the fracture toughness anisotropy in the shale was found to be nearly constant across burial depths, despite reported variations with increasing confining pressure. Heated water was not found to be as important as the in situ environment in influencing shale fracture. These findings emphasize the need to test the fracture toughness of deep shales under coupled in situ stress and temperature conditions rather than focusing on either in situ stress or temperature alone. 展开更多
关键词 hydraulic fracturing Fracture toughness SHALE ANISOTROPY Deep rock mechanics
在线阅读 下载PDF
Steady thermal hydraulic analysis for a molten salt reactor 被引量:8
13
作者 ZHANG Dalin QIU Suizheng +1 位作者 LIU Changliang SU Guanghui 《Nuclear Science and Techniques》 SCIE CAS CSCD 2008年第3期187-192,共6页
The Molten Salt Reactor (MSR) can meet the demand of transmutation and breeding. In this study, theoretical calculation of steady thermal hydraulic characteristics of a graphite-moderated channel type MSR is conducted... The Molten Salt Reactor (MSR) can meet the demand of transmutation and breeding. In this study, theoretical calculation of steady thermal hydraulic characteristics of a graphite-moderated channel type MSR is conducted. The DRAGON code is adopted to calculate the axial and radial power factor firstly. The flow and heat transfer model in the fuel salt and graphite are developed on basis of the fundamental mass, momentum and energy equations. The results show the detailed flow distribution in the core, and the temperature profiles of the fuel salt, inner and outer wall in the nine typical elements along the axial flow direction are also obtained. 展开更多
关键词 熔盐堆 数字模拟 热水力分析 技术性能
在线阅读 下载PDF
On the efficient non-linear solver for hydraulic fracturing and well cementing simulations based on Anderson acceleration
14
作者 D.Yu.Derbyshev S.A.Boronin +1 位作者 G.V.Ovchinnikov A.A.Osiptsov 《Petroleum Science》 SCIE EI CAS CSCD 2024年第5期3237-3257,共21页
The aim of this study is to create a fast and stable iterative technique for numerical solution of a quasi-linear elliptic pressure equation. We developed a modified version of the Anderson acceleration(AA)algorithm t... The aim of this study is to create a fast and stable iterative technique for numerical solution of a quasi-linear elliptic pressure equation. We developed a modified version of the Anderson acceleration(AA)algorithm to fixed-point(FP) iteration method. It computes the approximation to the solutions at each iteration based on the history of vectors in extended space, which includes the vector of unknowns, the discrete form of the operator, and the equation's right-hand side. Several constraints are applied to AA algorithm, including a limitation of the time step variation during the iteration process, which allows switching to the base FP iterations to maintain convergence. Compared to the base FP algorithm, the improved version of the AA algorithm enables a reliable and rapid convergence of the iterative solution for the quasi-linear elliptic pressure equation describing the flow of particle-laden yield-stress fluids in a narrow channel during hydraulic fracturing, a key technology for stimulating hydrocarbon-bearing reservoirs. In particular, the proposed AA algorithm allows for faster computations and resolution of unyielding zones in hydraulic fractures that cannot be calculated using the FP algorithm. The quasi-linear elliptic pressure equation under consideration describes various physical processes, such as the displacement of fluids with viscoplastic rheology in a narrow cylindrical annulus during well cementing,the displacement of cross-linked gel in a proppant pack filling hydraulic fractures during the early stage of well production(fracture flowback), and multiphase filtration in a rock formation. We estimate computational complexity of the developed algorithm as compared to Jacobian-based algorithms and show that the performance of the former one is higher in modelling of flows of viscoplastic fluids. We believe that the developed algorithm is a useful numerical tool that can be implemented in commercial simulators to obtain fast and converged solutions to the non-linear problems described above. 展开更多
关键词 Anderson acceleration Non-linear solver hydraulic fracturing Well cementing Yield-stress fluid
在线阅读 下载PDF
Thermal hydraulic and mechanical analysis of CH HCSB TBM 被引量:5
15
作者 WANG Xiao-yu FENG Kai-ming ZHANG Guo-shu YUAN Tao 《核聚变与等离子体物理》 EI CAS CSCD 北大核心 2006年第3期181-185,共5页
Based on the structure design and results of neutronics analysis of the CH HCSB TBM (Chinese helium cooled solid breeder test blanket module), thermal hydraulic and mechanical analyses have been carried out. Results s... Based on the structure design and results of neutronics analysis of the CH HCSB TBM (Chinese helium cooled solid breeder test blanket module), thermal hydraulic and mechanical analyses have been carried out. Results show that the design of the CH HCSB TBM is reasonable and acceptable. 展开更多
关键词 热水力分析 中子物理学分析 再生区 热核反应
在线阅读 下载PDF
Reshaping force for deformed casing repairing with hydraulic rolling reshaper and its influencing factors
16
作者 Hong-Fei Li Min Luo +2 位作者 Ting-Ting Xu Qiao-Zhen Li Cong-Jian Huang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2745-2757,共13页
Hydraulic rolling reshaper is an advanced reshaping tool to solve the problem of casing deformation,which has been widely used in recent years.When it is used for well repair operation,the reshaping force provided by ... Hydraulic rolling reshaper is an advanced reshaping tool to solve the problem of casing deformation,which has been widely used in recent years.When it is used for well repair operation,the reshaping force provided by ground devices is generally determined by experience.However,too large reshaping force may destroy the deformed casing,and too small reshaping force may also prolong the construction period and affect the repairing effect.In this paper,based on Hertz contact theory and elastic-plastic theory,combined with the process parameters of shaping,and considering the structural characteristics of the deformed casing and reshaper,we propose a mathematical model for calculating the reshaping force required for repairing deformed casing by hydraulic rolling reshaper.Meanwhile,the finite element model and numerical method of hydraulic rolling reshaper repairing deformed casing are established by using the finite element method,and the reliability of the mathematical model is verified by several examples.On this basis,the control variable method is used to investigate the influence of each parameter on the reshaping force,and the influence degree of each parameter is explored by orthogonal simulation test and Pearson correlation analysis.The research results not only provide an important theoretical basis for the prediction of reshaping force in on-site construction,but also provide a reference for the subsequent improvement of the shaping process. 展开更多
关键词 hydraulic rolling reshaper Reshaping force Deformed casing Casing reshaping Hertz contact theory
在线阅读 下载PDF
Effect of cyclic hydraulic stimulation on pore structure and methane sorption characteristics of anthracite coal: A case study in the Qinshui Basin, China
17
作者 Rui-Shuai Ma Ji-Yuan Zhang +2 位作者 Qi-Hong Feng Xue-Ying Zhang Yan-Hui Yang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第5期3271-3287,共17页
The cyclic hydraulic stimulation(CHS) has proven as a prospective technology for enhancing the permeability of unconventional formations such as coalbeds. However, the effects of CHS on the microstructure and gas sorp... The cyclic hydraulic stimulation(CHS) has proven as a prospective technology for enhancing the permeability of unconventional formations such as coalbeds. However, the effects of CHS on the microstructure and gas sorption behavior of coal remain unclear. In this study, laboratory tests including the nuclear magnetic resonance(NMR), low-temperature nitrogen sorption(LTNS), and methane sorption isotherm measurement were conducted to explore changes in the pore structure and methane sorption characteristics caused by CHS on an anthracite coal from Qinshui Basin, China. The NMR and LTNS tests show that after CHS treatment, meso- and macro-pores tend to be enlarged, whereas micropores with larger sizes and transition-pores may be converted into smaller-sized micro-pores. After the coal samples treated with 1, 3, 5 and 7 hydraulic stimulation cycles, the total specific surface area(TSSA)decreased from 0.636 to 0.538, 0.516, 0.505, and 0.491 m^(2)/g, respectively. Fractal analysis based on the NMR and LTNS results show that the surface fractal dimensions increase with the increase in the number of hydraulic stimulation cycles, while the volume fractal dimensions exhibit an opposite trend to the surface fractal dimensions, indicating that the pore surface roughness and pore structure connectivity are both increased after CHS treatment. Methane sorption isothermal measurements show that both the Langmuir volume and Langmuir pressure decrease significantly with the increase in the number of hydraulic stimulation cycles. The Langmuir volume and the Langmuir pressure decrease from 33.47 cm^(3)/g and 0.205 MPa to 24.18 cm^(3)/g and 0.176 MPa after the coal samples treated with 7 hydraulic stimulation cycles, respectively. The increments of Langmuir volume and Langmuir pressure are positively correlated with the increment of TSSA and negatively correlated with the increments of surface fractal dimensions. 展开更多
关键词 Coalbed methane Cyclic hydraulic stimulation Pore structure Methane sorption characteristics Fractal analysis
在线阅读 下载PDF
Multistage hydraulic fracturing of a horizontal well for hard roof related coal burst control:Insights from numerical modelling to field application
18
作者 Jiaxin Zhuang Zonglong Mu +4 位作者 Wu Cai Hu He Lee J.Hosking Guojun Xi Biao Jiao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第8期1095-1114,共20页
Multistage hydraulic fracturing of horizontal wells(MFHW)is a promising technology for controlling coal burst caused by thick and hard roofs in China.However,challenges remain regarding the MFHW control mechanism of c... Multistage hydraulic fracturing of horizontal wells(MFHW)is a promising technology for controlling coal burst caused by thick and hard roofs in China.However,challenges remain regarding the MFHW control mechanism of coal burst and assessment of the associated fracturing effects.In this study,these challenges were investigated through numerical modelling and field applications,based on the actual operating parameters of MFHW for hard roofs in a Chinese coal mine.A damage parameter(D)is proposed to assess the degree of hydraulic fracturing in the roof.The mechanisms and effects of MFHW for controlling coal burst are analyzed using microseismic(MS)data and front-abutment stress distribution.Results show that the degree of fracturing can be categorized into lightly-fractured(D≤0.3),moderately fractured(0.3<D≤0.6),well-fractured(0.6<D≤0.9),and over-fractured(0.9<D≤0.95).A response stage in the fracturing process,characterized by a slowdown in crack development,indicates the transition to a wellfractured condition.After MFHW,the zone range and peak value of the front-abutment stress decrease.Additionally,MS events shift from near the coal seam to the fractured roof layers,with the number of MS events increases while the average MS energy decreases.The MFHW control mechanisms of coal bursts involve mitigating mining-induced stress and reducing seismic activity during longwall retreat,ensuring stresses remain below the ultimate stress level.These findings provide a reference for evaluating MFHW fracturing effects and controlling coal burst disasters in engineering. 展开更多
关键词 Coal burst Multistage hydraulic fracturing of horizontal wells Mining-induced seismicity Mining-induced stress Effectiveness evaluation
在线阅读 下载PDF
Physical and numerical investigations of target stratum selection for ground hydraulic fracturing of multiple hard roofs
19
作者 Binwei Xia Yanmin Zhou +2 位作者 Xingguo Zhang Lei Zhou Zikun Ma 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第5期699-712,共14页
Ground hydraulic fracturing plays a crucial role in controlling the far-field hard roof,making it imperative to identify the most suitable target stratum for effective control.Physical experiments are conducted based ... Ground hydraulic fracturing plays a crucial role in controlling the far-field hard roof,making it imperative to identify the most suitable target stratum for effective control.Physical experiments are conducted based on engineering properties to simulate the gradual collapse of the roof during longwall top coal caving(LTCC).A numerical model is established using the material point method(MPM)and the strain-softening damage constitutive model according to the structure of the physical model.Numerical simulations are conducted to analyze the LTCC process under different hard roofs for ground hydraulic fracturing.The results show that ground hydraulic fracturing releases the energy and stress of the target stratum,resulting in a substantial lag in the fracturing of the overburden before collapse occurs in the hydraulic fracturing stratum.Ground hydraulic fracturing of a low hard roof reduces the lag effect of hydraulic fractures,dissipates the energy consumed by the fracture of the hard roof,and reduces the abutment stress.Therefore,it is advisable to prioritize the selection of the lower hard roof as the target stratum. 展开更多
关键词 Target stratum selection Ground hydraulic fracturing Hard roof control Fracture network Material point method
在线阅读 下载PDF
Thermal-hydraulic analysis of the HL-2M divertor using an homogeneous equilibrium model 被引量:2
20
作者 卢勇 蔡立君 +4 位作者 刘雨祥 刘健 袁应龙 郑国尧 刘德权 《Plasma Science and Technology》 SCIE EI CAS CSCD 2017年第9期114-120,共7页
The heat flux of the HL-2M divertor would reach 10 MW m^-2 or more at the local area when the device operates at high parameters. Subcooled boiling could occur at high thermal load, which would be simulated based on t... The heat flux of the HL-2M divertor would reach 10 MW m^-2 or more at the local area when the device operates at high parameters. Subcooled boiling could occur at high thermal load, which would be simulated based on the homogeneous equilibrium model. The results show that the current design of the HL-2M divertor could withstand the local heat flux 10 MW m^-2 at a plasma pulse duration of 5 s, inlet coolant pressure of 1.5 MPa and flow velocity of 4 m s^-1. The pulse duration that the HL-2M divertor could withstand is closely related to the coolant velocity. In addition, at the time of 2 min after plasma discharge, the flow velocity decreased from 4 m s^-1 to 1 m s^-1, and the divertor could also be cooled to the initial temperature before the next plasma discharge commences. 展开更多
关键词 boiling cooled hydraulic Figure contour vaporization inlet vapour outer reaches
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部