To obtain the adjustable photonic crystals (PCs), we numerically investigate one-dimensional (1D) PCs with alternating VO2 and SiO2 layers through transfer matrix method. The dispersion relation agrees well with the t...To obtain the adjustable photonic crystals (PCs), we numerically investigate one-dimensional (1D) PCs with alternating VO2 and SiO2 layers through transfer matrix method. The dispersion relation agrees well with the transmittance obtained by the finite element calculation. Tunable band gaps are achieved with the thermal stimuli of VO2, which has two crystal structures. The monoclinic crystal structure VO2 (R) at low temperature exhibits insulating property, and the high temperature square rutile structure VO2 (M) presents metal state. Concretely, the bandwidth is getting narrower and red shift occurs with the higher temperature in VO2 (R)/SiO2 PCs structure. Based on the phase change characteristics of VO2, we can flexibly adjust the original structure as VO2 (R)/VO2 (M)/SiO2. By increasing the phase ratio of VO2 (R) to VO2 (M), the band gap width gradually becomes wider and blue shift occurs. The discrete layers of gradient composites on the dispersion of 1D PCs are also investigated, which enhances the feasibility in practical operation. Thus, our proposed thermal modulation PCs structure paves a new way to realize thermal tunable optical filters and sensors.展开更多
The Indian Test Blanket Module(TBM) program in ITER is one of the major steps in its fusion reactor program towards DEMO and the future fusion power reactor vision. Research and development(RD) is focused on two t...The Indian Test Blanket Module(TBM) program in ITER is one of the major steps in its fusion reactor program towards DEMO and the future fusion power reactor vision. Research and development(RD) is focused on two types of breeding blanket concepts: lead–lithium ceramic breeder(LLCB) and helium-cooled ceramic breeder(HCCB) blanket systems for the DEMO reactor. As part of the ITER-TBM program, the LLCB concept will be tested in one-half of ITER port no. 2, whose materials and technologies will be tested during ITER operation. The HCCB concept is a variant of the solid breeder blanket, which is presently part of our domestic RD program for DEMO relevant technology development. In the HCCB concept Li_2TiO_3 and beryllium are used as the tritium breeder and neutron multiplier, respectively, in the form of a packed bed having edge-on configuration with reduced activation ferritic martensitic steel as the structural material. In this paper two design schemes, mainly two different orientations of pebble beds, are discussed. In the current concept(case-1), the ceramic breeder beds are kept horizontal in the toroidal–radial direction. Due to gravity, the pebbles may settle down at the bottom and create a finite gap between the pebbles and the top cooling plate, which will affect the heat transfer between them. In the alternate design concept(case-2), the pebble bed is vertically(poloidal–radial) orientated where the side plates act as cooling plates instead of top and bottom plates. These two design variants are analyzed analytically and 2 D thermal-hydraulic simulation studies are carried out with ANSYS, using the heat loads obtained from neutronic calculations.Based on the analysis the performance is compared and details of the thermal and radiative heat transfer studies are also discussed in this paper.展开更多
基金Project supported by the Key Science and Technology Research Project of Henan Province, China (Grant No. 1721023100107).
文摘To obtain the adjustable photonic crystals (PCs), we numerically investigate one-dimensional (1D) PCs with alternating VO2 and SiO2 layers through transfer matrix method. The dispersion relation agrees well with the transmittance obtained by the finite element calculation. Tunable band gaps are achieved with the thermal stimuli of VO2, which has two crystal structures. The monoclinic crystal structure VO2 (R) at low temperature exhibits insulating property, and the high temperature square rutile structure VO2 (M) presents metal state. Concretely, the bandwidth is getting narrower and red shift occurs with the higher temperature in VO2 (R)/SiO2 PCs structure. Based on the phase change characteristics of VO2, we can flexibly adjust the original structure as VO2 (R)/VO2 (M)/SiO2. By increasing the phase ratio of VO2 (R) to VO2 (M), the band gap width gradually becomes wider and blue shift occurs. The discrete layers of gradient composites on the dispersion of 1D PCs are also investigated, which enhances the feasibility in practical operation. Thus, our proposed thermal modulation PCs structure paves a new way to realize thermal tunable optical filters and sensors.
文摘The Indian Test Blanket Module(TBM) program in ITER is one of the major steps in its fusion reactor program towards DEMO and the future fusion power reactor vision. Research and development(RD) is focused on two types of breeding blanket concepts: lead–lithium ceramic breeder(LLCB) and helium-cooled ceramic breeder(HCCB) blanket systems for the DEMO reactor. As part of the ITER-TBM program, the LLCB concept will be tested in one-half of ITER port no. 2, whose materials and technologies will be tested during ITER operation. The HCCB concept is a variant of the solid breeder blanket, which is presently part of our domestic RD program for DEMO relevant technology development. In the HCCB concept Li_2TiO_3 and beryllium are used as the tritium breeder and neutron multiplier, respectively, in the form of a packed bed having edge-on configuration with reduced activation ferritic martensitic steel as the structural material. In this paper two design schemes, mainly two different orientations of pebble beds, are discussed. In the current concept(case-1), the ceramic breeder beds are kept horizontal in the toroidal–radial direction. Due to gravity, the pebbles may settle down at the bottom and create a finite gap between the pebbles and the top cooling plate, which will affect the heat transfer between them. In the alternate design concept(case-2), the pebble bed is vertically(poloidal–radial) orientated where the side plates act as cooling plates instead of top and bottom plates. These two design variants are analyzed analytically and 2 D thermal-hydraulic simulation studies are carried out with ANSYS, using the heat loads obtained from neutronic calculations.Based on the analysis the performance is compared and details of the thermal and radiative heat transfer studies are also discussed in this paper.