期刊文献+
共找到1,025篇文章
< 1 2 52 >
每页显示 20 50 100
A hybrid genetic algorithm to the program optimization model based on a heterogeneous network
1
作者 CHEN Hang DOU Yajie +3 位作者 CHEN Ziyi JIA Qingyang ZHU Chen CHEN Haoxuan 《Journal of Systems Engineering and Electronics》 2025年第4期994-1005,共12页
Project construction and development are an impor-tant part of future army designs.In today’s world,intelligent war-fare and joint operations have become the dominant develop-ments in warfare,so the construction and ... Project construction and development are an impor-tant part of future army designs.In today’s world,intelligent war-fare and joint operations have become the dominant develop-ments in warfare,so the construction and development of the army need top-down,top-level design,and comprehensive plan-ning.The traditional project development model is no longer suf-ficient to meet the army’s complex capability requirements.Projects in various fields need to be developed and coordinated to form a joint force and improve the army’s combat effective-ness.At the same time,when a program consists of large-scale project data,the effectiveness of the traditional,precise mathe-matical planning method is greatly reduced because it is time-consuming,costly,and impractical.To solve above problems,this paper proposes a multi-stage program optimization model based on a heterogeneous network and hybrid genetic algo-rithm and verifies the effectiveness and feasibility of the model and algorithm through an example.The results show that the hybrid algorithm proposed in this paper is better than the exist-ing meta-heuristic algorithm. 展开更多
关键词 program optimization heterogeneous network genetic algorithm portfolio selection.
在线阅读 下载PDF
Optimization of HMM Parameters Based on Chaos and Genetic Algorithm for Hand Gesture Recognition 被引量:3
2
作者 Liu Jianghua , Cheng Junshi & Chen Jiapin Information Storage and Research Center, Shanghai Jiaotong University, Shanghai 200030, P. R. China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2002年第4期79-84,共6页
In order to prevent standard genetic algorithm (SGA) from being premature, chaos is introduced into GA, thus forming chaotic anneal genetic algorithm (CAGA). Chaos ergodicity is used to initialize the population, and ... In order to prevent standard genetic algorithm (SGA) from being premature, chaos is introduced into GA, thus forming chaotic anneal genetic algorithm (CAGA). Chaos ergodicity is used to initialize the population, and chaotic anneal mutation operator is used as the substitute for the mutation operator in SGA. CAGA is a unified framework of the existing chaotic mutation methods. To validate the proposed algorithm, three algorithms, i. e. Baum-Welch, SGA and CAGA, are compared on training hidden Markov model (HMM) to recognize the hand gestures. Experiments on twenty-six alphabetical gestures show the CAGA validity. 展开更多
关键词 Chaos theory EXPERIMENTS genetic algorithms optimization
在线阅读 下载PDF
Using genetic algorithm based fuzzy adaptive resonance theory for clustering analysis 被引量:3
3
作者 LIU Bo WANG Yong WANG Hong-jian 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2006年第B07期547-551,共5页
关键词 聚类分析 遗传算法 模糊自适应谐振理论 人工神经网络
在线阅读 下载PDF
Orthogonal genetic algorithm for solving quadratic bilevel programming problems 被引量:4
4
作者 Hong Li Yongchang Jiao Li Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第5期763-770,共8页
A quadratic bilevel programming problem is transformed into a single level complementarity slackness problem by applying Karush-Kuhn-Tucker(KKT) conditions.To cope with the complementarity constraints,a binary encod... A quadratic bilevel programming problem is transformed into a single level complementarity slackness problem by applying Karush-Kuhn-Tucker(KKT) conditions.To cope with the complementarity constraints,a binary encoding scheme is adopted for KKT multipliers,and then the complementarity slackness problem is simplified to successive quadratic programming problems,which can be solved by many algorithms available.Based on 0-1 binary encoding,an orthogonal genetic algorithm,in which the orthogonal experimental design with both two-level orthogonal array and factor analysis is used as crossover operator,is proposed.Numerical experiments on 10 benchmark examples show that the orthogonal genetic algorithm can find global optimal solutions of quadratic bilevel programming problems with high accuracy in a small number of iterations. 展开更多
关键词 orthogonal genetic algorithm quadratic bilevel programming problem Karush-Kuhn-Tucker conditions orthogonal experimental design global optimal solution.
在线阅读 下载PDF
Solution for integer linear bilevel programming problems using orthogonal genetic algorithm 被引量:10
5
作者 Hong Li Li Zhang Yongchang Jiao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第3期443-451,共9页
An integer linear bilevel programming problem is firstly transformed into a binary linear bilevel programming problem, and then converted into a single-level binary implicit programming. An orthogonal genetic algorith... An integer linear bilevel programming problem is firstly transformed into a binary linear bilevel programming problem, and then converted into a single-level binary implicit programming. An orthogonal genetic algorithm is developed for solving the binary linear implicit programming problem based on the orthogonal design. The orthogonal design with the factor analysis, an experimental design method is applied to the genetic algorithm to make the algorithm more robust, statistical y sound and quickly convergent. A crossover operator formed by the orthogonal array and the factor analysis is presented. First, this crossover operator can generate a smal but representative sample of points as offspring. After al of the better genes of these offspring are selected, a best combination among these offspring is then generated. The simulation results show the effectiveness of the proposed algorithm. 展开更多
关键词 integer linear bilevel programming problem integer optimization genetic algorithm orthogonal experiment design
在线阅读 下载PDF
Improved genetic algorithm for nonlinear programming problems 被引量:8
6
作者 Kezong Tang Jingyu Yang +1 位作者 Haiyan Chen Shang Gao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第3期540-546,共7页
An improved genetic algorithm(IGA) based on a novel selection strategy to handle nonlinear programming problems is proposed.Each individual in selection process is represented as a three-dimensional feature vector w... An improved genetic algorithm(IGA) based on a novel selection strategy to handle nonlinear programming problems is proposed.Each individual in selection process is represented as a three-dimensional feature vector which is composed of objective function value,the degree of constraints violations and the number of constraints violations.It is easy to distinguish excellent individuals from general individuals by using an individuals' feature vector.Additionally,a local search(LS) process is incorporated into selection operation so as to find feasible solutions located in the neighboring areas of some infeasible solutions.The combination of IGA and LS should offer the advantage of both the quality of solutions and diversity of solutions.Experimental results over a set of benchmark problems demonstrate that IGA has better performance than other algorithms. 展开更多
关键词 genetic algorithm(GA) nonlinear programming problem constraint handling non-dominated solution optimization problem.
在线阅读 下载PDF
Optimization algorithm based on kinetic-molecular theory 被引量:2
7
作者 范朝冬 欧阳红林 +1 位作者 张英杰 艾朝阳 《Journal of Central South University》 SCIE EI CAS 2013年第12期3504-3512,共9页
Traditionally, the optimization algorithm based on physics principles has some shortcomings such as low population diversity and susceptibility to local extrema. A new optimization algorithm based on kinetic-molecular... Traditionally, the optimization algorithm based on physics principles has some shortcomings such as low population diversity and susceptibility to local extrema. A new optimization algorithm based on kinetic-molecular theory(KMTOA) is proposed. In the KMTOA three operators are designed: attraction, repulsion and wave. The attraction operator simulates the molecular attraction, with the molecules moving towards the optimal ones, which makes possible the optimization. The repulsion operator simulates the molecular repulsion, with the molecules diverging from the optimal ones. The wave operator simulates the thermal molecules moving irregularly, which enlarges the searching spaces and increases the population diversity and global searching ability. Experimental results indicate that KMTOA prevails over other algorithms in the robustness, solution quality, population diversity and convergence speed. 展开更多
关键词 optimization algorithm heuristic search algorithm kinetic-molecular theory DIVERSITY CONVERGENCE
在线阅读 下载PDF
Method of Fire Image Identification Based on Optimization Theory 被引量:1
8
作者 Lu Jiecheng, Ding Ding, Wu Longbiao & Song WeiguoDept. of Electronic Science and Technology, University of Science and Technology of China, Hefei 230026, P. R. China(Received March 3, 2001) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2002年第2期78-83,共6页
In view of some distinctive characteristics of the early-stage flame image, a corresponding method of characteristic extraction is presented. Also introduced is the application of the improved BP algorithm based on th... In view of some distinctive characteristics of the early-stage flame image, a corresponding method of characteristic extraction is presented. Also introduced is the application of the improved BP algorithm based on the optimization theory to identifying fire image characteristics. First the optimization of BP neural network adopting Levenberg-Marquardt algorithm with the property of quadratic convergence is discussed, and then a new system of fire image identification is devised. Plenty of experiments and field tests have proved that this system can detect the early-stage fire flame quickly and reliably. 展开更多
关键词 Fire flame Characteristic extraction optimization theory Levenberg-Marquardt algorithm.
在线阅读 下载PDF
Multi-objective optimization of crimping of large-diameter welding pipe
9
作者 范利锋 高颖 +1 位作者 云建斌 李志鹏 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第7期2540-2548,共9页
Crimping is widely adopted in the production of large-diameter submerged-arc welding pipes. Traditionally, designers obtain the technical parameters for crimping from experience or by trial and error through experimen... Crimping is widely adopted in the production of large-diameter submerged-arc welding pipes. Traditionally, designers obtain the technical parameters for crimping from experience or by trial and error through experiments and the finite element(FE) method. However, it is difficult to achieve ideal crimping quality by these approaches. To resolve this issue, crimping parameter design was investigated by multi-objective optimization. Crimping was simulated using the FE code ABAQUS and the FE model was validated experimentally. A welding pipe made of X80 high-strength pipeline steel was considered as a target object and the optimization problem for its crimping was formulated as a mathematical model and crimping was optimized. A response surface method based on the radial basis function was used to construct a surrogate model; the genetic algorithm NSGA-II was adopted to search for Pareto solutions; grey relational analysis was used to determine the most satisfactory solution from the Pareto solutions. The obtained optimal design of parameters shows good agreement with the initial design and remarkably improves the crimping quality. Thus, the results provide an effective approach for improving crimping quality and reducing design times. 展开更多
关键词 crimping welding pipe optimization grey system theory genetic algorithm
在线阅读 下载PDF
Computational intelligence approach for uncertainty quantification using evidence theory 被引量:4
10
作者 Bin Suo Yongsheng Cheng +1 位作者 Chao Zeng Jun Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第2期250-260,共11页
As an alternative or complementary approach to the classical probability theory,the ability of the evidence theory in uncertainty quantification(UQ) analyses is subject of intense research in recent years.Two state-... As an alternative or complementary approach to the classical probability theory,the ability of the evidence theory in uncertainty quantification(UQ) analyses is subject of intense research in recent years.Two state-of-the-art numerical methods,the vertex method and the sampling method,are commonly used to calculate the resulting uncertainty based on the evidence theory.The vertex method is very effective for the monotonous system,but not for the non-monotonous one due to its high computational errors.The sampling method is applicable for both systems.But it always requires a high computational cost in UQ analyses,which makes it inefficient in most complex engineering systems.In this work,a computational intelligence approach is developed to reduce the computational cost and improve the practical utility of the evidence theory in UQ analyses.The method is demonstrated on two challenging problems proposed by Sandia National Laboratory.Simulation results show that the computational efficiency of the proposed method outperforms both the vertex method and the sampling method without decreasing the degree of accuracy.Especially,when the numbers of uncertain parameters and focal elements are large,and the system model is non-monotonic,the computational cost is five times less than that of the sampling method. 展开更多
关键词 uncertainty quantification(UQ) evidence theory hybrid algorithm interval algorithm genetic algorithm(GA).
在线阅读 下载PDF
Robust optimization design on impeller of mixed-flow pump 被引量:1
11
作者 ZHAO Binjuan LIAO Wenyan +3 位作者 XIE Yuntong HAN Luyao FU Yanxia HUANG Zhongfu 《排灌机械工程学报》 CSCD 北大核心 2021年第7期671-677,共7页
To increase the robustness of the optimization solutions of the mixed-flow pump,the impeller was firstly indirectly parameterized based on the 2D blade design theory.Secondly,the robustness of the optimization solutio... To increase the robustness of the optimization solutions of the mixed-flow pump,the impeller was firstly indirectly parameterized based on the 2D blade design theory.Secondly,the robustness of the optimization solution was mathematically defined,and then calculated by Monte Carlo sampling method.Thirdly,the optimization on the mixed-flow pump′s impeller was decomposed into the optimal and robust sub-optimization problems,to maximize the pump head and efficiency and minimize the fluctuation degree of them under varying working conditions at the same time.Fourthly,using response surface model,a surrogate model was established between the optimization objectives and control variables of the shape of the impeller.Finally,based on a multi-objective genetic optimization algorithm,a two-loop iterative optimization process was designed to find the optimal solution with good robustness.Comparing the original and optimized pump,it is found that the internal flow field of the optimized pump has been improved under various operating conditions,the hydraulic performance has been improved consequently,and the range of high efficient zone has also been widened.Besides,with the changing of working conditions,the change trend of the hydraulic performance of the optimized pump becomes gentler,the flow field distribution is more uniform,and the influence degree of the varia-tion of working conditions decreases,and the operating stability of the pump is improved.It is concluded that the robust optimization method proposed in this paper is a reasonable way to optimize the mixed-flow pump,and provides references for optimization problems of other fluid machinery. 展开更多
关键词 mixed-flow pump multi-objective genetic optimization robust optimization response surface method 2D blade design theory
在线阅读 下载PDF
Design Method for Optimizing the Interactive Interface of Live Broadcasting Platform for the Elderly Users 被引量:1
12
作者 WEI Bi-ze FAN Wei DUAN Ying-ke 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第4期167-178,共12页
In the era of network live broadcasting for everyone,the development of live broadcasting platforms is also more intelligent and diversified.However,in the face of a large group of elderly users,the interface interact... In the era of network live broadcasting for everyone,the development of live broadcasting platforms is also more intelligent and diversified.However,in the face of a large group of elderly users,the interface interaction design mode used is still mainly based on the interaction mode for young groups,and is not designed for elderly users.Therefore,a design method for optimizing the interaction interface of live broadcasting platform for elderly users was proposed in this study.Firstly,the case study method and Delphi expert survey method were used to determine the design needs of elderly users and the design mode was analysed.Secondly,the orthogonal design principle was used to design a test sample of the interactive interface of live broadcasting platform applicable for the elderly users,and then a user evaluation system was established to calculate the weights of the design elements using hierarchical analysis,and then the predictive relationship between the design mode of the interactive interface of live broadcasting platform and the elderly users was established by Quantitative Theory I.Finally,Genetic Algorithm was applied to generate the optimized design scheme.The results showed that the design method based on the Genetic Algorithm and the combination of Quantitative Theory can scientifically and effectively optimize the design of the interactive interface of the live broadcasting platform for the elderly users,and improve the experience of the elderly users. 展开更多
关键词 Live broadcasting platform Interaction design Elderly users genetic algorithm Quantitative theory I
在线阅读 下载PDF
Study on Power Transformers Fault Diagnosis Based on Wavelet Neural Network and D-S Evidence Theory
13
作者 LIANG Liu-ming CHEN Wei-gen +2 位作者 YUE Yan-feng WEI Chao YANG Jian-feng 《高电压技术》 EI CAS CSCD 北大核心 2008年第12期2694-2700,共7页
>Transformer faults are quite complicated phenomena and can occur due to a variety of reasons.There have been several methods for transformer fault synthetic diagnosis,but each of them has its own limitations in re... >Transformer faults are quite complicated phenomena and can occur due to a variety of reasons.There have been several methods for transformer fault synthetic diagnosis,but each of them has its own limitations in real fault diagnosis applications.In order to overcome those shortcomings in the existing methods,a new transformer fault diagnosis method based on a wavelet neural network optimized by adaptive genetic algorithm(AGA)and an improved D-S evidence theory fusion technique is proposed in this paper.The proposed method combines the oil chromatogram data and the off-line electrical test data of transformers to carry out fault diagnosis.Based on the fusion mechanism of D-S evidence theory,the comprehensive reliability of evidence is constructed by considering the evidence importance,the outputs of the neural network and the expert experience.The new method increases the objectivity of the basic probability assignment(BPA)and reduces the basic probability assigned for uncertain and unimportant information.The case study results of using the proposed method show that it has a good performance of fault diagnosis for transformers. 展开更多
关键词 小波神经网络 D-S证据理论 电力变压器 故障诊断 适应基因算法
在线阅读 下载PDF
应急车路径与专用道协同优化的双层规划方法 被引量:2
14
作者 龙科军 邹道兴 +2 位作者 刘洋 马昌喜 马璐 《交通运输系统工程与信息》 北大核心 2025年第1期202-211,共10页
已有应急车辆路径规划的研究中,专用车道布设方案通常被视为已知条件,因此,本文提出一种同时优化应急车路径及专用车道的双层规划模型。在规划应急车路径时,将是否设置应急专用车道定义为模型的决策变量,并引入前景理论来衡量设置专用... 已有应急车辆路径规划的研究中,专用车道布设方案通常被视为已知条件,因此,本文提出一种同时优化应急车路径及专用车道的双层规划模型。在规划应急车路径时,将是否设置应急专用车道定义为模型的决策变量,并引入前景理论来衡量设置专用车道对交通流的影响。上层模型目标函数包含应急车行程时间和顺畅通行前景值两部分,其中前景值作为部署应急专用车道的决策依据;下层模型基于Wardrop均衡原理进行交通分配。结合遗传算法和禁忌搜索算法,提出GA-TS(Genetic Algorithm-Tabu Search)算法求解模型。通过在Nguyen-Dupuis仿真网络上进行数值实验,验证了模型和算法的有效性。实验结果表明:与不部署应急专用车道相比,在不增加路径交通饱和度的情况下,本文模型能将应急车辆的行程时间缩短10.69%。敏感性分析结果表明,在不同交通需求下,本文模型均能有效缩短应急车辆行程时间,并且随着交通需求增大,应急车辆行程时间缩短越明显。此外,相比于暴力搜索算法,本文设计的算法在求解模型时的平均耗时降低了87.02%,显著提高了模型的求解效率。 展开更多
关键词 城市交通 应急车辆优先 遗传算法 路径优化 前景理论
在线阅读 下载PDF
基于Wasserstein两阶段分布鲁棒的多主体多能微网合作博弈优化调度
15
作者 王波 王蔚 +2 位作者 马恒瑞 李天格 姚良忠 《电工技术学报》 北大核心 2025年第17期5553-5570,共18页
多能微网在运行过程中会受到电价以及新能源出力等多重不确定因素的影响。针对该问题,该文提出一种基于Wasserstein两阶段分布鲁棒优化的多主体多能微网合作博弈优化模型。首先,考虑多能微网和其内部产消者的互动关系,提出了“上层为多... 多能微网在运行过程中会受到电价以及新能源出力等多重不确定因素的影响。针对该问题,该文提出一种基于Wasserstein两阶段分布鲁棒优化的多主体多能微网合作博弈优化模型。首先,考虑多能微网和其内部产消者的互动关系,提出了“上层为多能微网,下层为产消者”的双层优化模型;其次,采用基于Wasserstein距离的模糊集分别构建了电价、多能微网新能源出力以及内部产消者光伏出力的不确定性模型;然后,在多主体多能微网之间,构建了考虑合作博弈和隐私保护的能源交互模型,并采用交替方向乘子法(ADMM)结合列与约束生成法(C&CG)对模型进行分布式求解;最后,基于包含三主体多能微网的系统进行算例分析,验证了该文所提模型和算法的有效性。 展开更多
关键词 双层优化 两阶段分布鲁棒优化 多能微网 合作博弈 分布式算法
在线阅读 下载PDF
基于角速度约束及神经网络的平面PAA系统控制
16
作者 熊培银 柴颖豪 +1 位作者 曾惠芳 潘昌忠 《深圳大学学报(理工版)》 北大核心 2025年第6期740-746,共7页
为实现对首关节欠驱动的平面三连杆PAA(passive-active-active)系统末端位置的稳定控制,提出一种基于同角速度约束及神经网络的位置控制策略.基于欧拉-拉格朗日方程建立系统动力学模型,分析欠驱动关节约束方程,获得各连杆角速度约束关系... 为实现对首关节欠驱动的平面三连杆PAA(passive-active-active)系统末端位置的稳定控制,提出一种基于同角速度约束及神经网络的位置控制策略.基于欧拉-拉格朗日方程建立系统动力学模型,分析欠驱动关节约束方程,获得各连杆角速度约束关系;在主动连杆同角速度约束条件下,构造Lyapunov函数并设计控制器,构建系统仿真平台,采集主动连杆与被动连杆的角度数据,利用生成对抗网络进行数据增强,并基于深度神经网络建立被动连杆角度与主动连杆角度的对应关系;结合连杆角度的几何约束关系,在主动连杆同角速度约束条件下,使用遗传算法优化求解系统末端点位置对应的各连杆目标角度;基于Lyapunov函数设计的控制器,实现系统第2和第3连杆同步稳定至目标角度,同时实现对被动连杆的角度控制,最终通过非切换控制策略实现系统末端点的位置控制目标.仿真结果表明,与降阶切换的控制方法相比,无切换控制策略的系统末端在8 s内收敛至(-0.6980,1.0030)处.研究通过神经网络逼近系统角度约束关系,避免了复杂的积分过程,并通过无切换控制策略实现了系统末端点从初始位置到目标位置的精确控制. 展开更多
关键词 自动控制应用理论 机械臂控制 欠驱动系统控制 平面PAA系统 位置控制 遗传算法 角速度约束 深度神经网络
在线阅读 下载PDF
基于小生境遗传算法的网络入侵节点智能检测方法
17
作者 王建刚 《吉林大学学报(理学版)》 北大核心 2025年第4期1099-1104,共6页
为降低网络入侵的风险,提出一种基于小生境遗传算法的网络入侵节点智能检测方法.首先,针对网络入侵的攻击行为进行聚合处理,利用双人攻防博弈模型分析网络的攻防状态,通过比对攻击与防御的效用强度,对网络的安全性进行全面分析,再根据... 为降低网络入侵的风险,提出一种基于小生境遗传算法的网络入侵节点智能检测方法.首先,针对网络入侵的攻击行为进行聚合处理,利用双人攻防博弈模型分析网络的攻防状态,通过比对攻击与防御的效用强度,对网络的安全性进行全面分析,再根据分析结果,通过卷积神经网络实现对攻击源的定位.其次,基于粗糙集理论,利用小生境遗传算法确定网络入侵节点检测的适应度函数,根据网络入侵节点智能检测规则,建立网络入侵节点智能检测模型,获得最终的检测结果.实验结果表明,该方法可有效提升对入侵攻击源的定位准确性和入侵节点检测准确性,该方法检测结果的宏F1分数大于0.96,表明该方法可有效实现设计预期. 展开更多
关键词 小生境遗传算法 网络入侵 入侵节点 粗糙集理论 适应度函数 入侵检测
在线阅读 下载PDF
基于CPSO算法改进GM-Markov模型的港口货物吞吐量预测
18
作者 陈丹涌 王俞亮 +1 位作者 曾枫泓 吴承禧 《重庆交通大学学报(自然科学版)》 北大核心 2025年第8期108-115,共8页
针对广东揭阳港惠来港区货物吞吐量的非线性动态预测需求,提出一种基于混沌粒子群优化的GM-Markov组合预测模型。通过集成灰色GM(1,1)模型与Markov链的优势,采用Logistic映射实现粒子群参数与状态区间的混沌初始化,构建具有动态适应能... 针对广东揭阳港惠来港区货物吞吐量的非线性动态预测需求,提出一种基于混沌粒子群优化的GM-Markov组合预测模型。通过集成灰色GM(1,1)模型与Markov链的优势,采用Logistic映射实现粒子群参数与状态区间的混沌初始化,构建具有动态适应能力的预测框架;改进后的模型通过状态空间划分与独立概率转移矩阵计算,有效验证了港区2007—2022年吞吐量数据的随机波动特征。研究结果表明:优化模型将平均绝对百分比误差下降至8.06%,较传统方法显著提升了预测精度与稳定性,验证了该模型在动态系统预测中的工程适用性。 展开更多
关键词 交通运输工程 灰色马尔可夫理论 混沌粒子群优化算法 惠来港区 货物吞吐量预测
在线阅读 下载PDF
激励相容理论下再制造绿色供应链网络模糊优化 被引量:1
19
作者 王振 叶春明 郭健全 《计算机应用研究》 北大核心 2025年第1期242-249,共8页
为探讨政府干预在供应链回收网络中的作用,基于激励相容理论,建立以最低总成本、最少碳排放和最大大数据投资回报为目标的多周期多目标优化模型,采用多目标三角模糊数和改进混合算法进行求解。结果表明:改进混合算法在处理回收网络多周... 为探讨政府干预在供应链回收网络中的作用,基于激励相容理论,建立以最低总成本、最少碳排放和最大大数据投资回报为目标的多周期多目标优化模型,采用多目标三角模糊数和改进混合算法进行求解。结果表明:改进混合算法在处理回收网络多周期多目标方面具有较强的求解能力;政府政策能弥补制造业减排能力弱的问题。结论如下:制造业企业运用人工智能技术回收再制造能够提升竞争力;政府引导能够帮助企业实现产业升级。 展开更多
关键词 不确定环境 激励相容理论 模糊机会约束规划 多目标多周期供应链 改进混合算法 政府干预
在线阅读 下载PDF
边云协同的视频分析任务卸载优化策略 被引量:1
20
作者 童佳慧 李越 +1 位作者 李燕君 毛科技 《传感技术学报》 北大核心 2025年第1期128-134,共7页
当前交通、安防等领域广泛应用摄像头采集视频进行分析,传统将视频流直接上传到云平台处理的方式面临接入量受限、时延大等问题;边云协同架构下,将部分视频流卸载到边缘服务器可降低时延,可缓解云服务压力。考虑到视频分析任务对准确率... 当前交通、安防等领域广泛应用摄像头采集视频进行分析,传统将视频流直接上传到云平台处理的方式面临接入量受限、时延大等问题;边云协同架构下,将部分视频流卸载到边缘服务器可降低时延,可缓解云服务压力。考虑到视频分析任务对准确率、时延和能耗都有一定要求,提出通过同时控制视频帧的分辨率、边缘服务器部署卷积神经网络(Convolution Neural Network, CNN)模型的策略以及边云卸载决策,来最大化视频分析准确率,同时满足长期平均时延和能耗约束的问题。利用李雅普诺夫随机优化理论将原优化问题转化为每个时隙的独立优化问题,并采用蚁群优化算法求解得到动态卸载优化策略,包括视频帧的分辨率选择、边缘服务器部署哪些CNN模型以及边云卸载决策。仿真实验结果表明,所提动态卸载策略相比其他基线方案能够在满足约束的情况下获得更高的视频分析准确率。 展开更多
关键词 边云协同计算 卸载决策 李雅普诺夫理论 蚁群优化算法 视频分析
在线阅读 下载PDF
上一页 1 2 52 下一页 到第
使用帮助 返回顶部