期刊文献+
共找到8,728篇文章
< 1 2 250 >
每页显示 20 50 100
Syntheses,crystal structures,and diametrically opposed mechanically-stimulated luminescence response of two Mg(Ⅱ)metal-organic frameworks
1
作者 CHEN Yukun FENG Kexin +2 位作者 ZHANG Bolun SONG Wentao ZHANG Jianjun 《无机化学学报》 北大核心 2025年第6期1227-1234,共8页
The reaction of Mg^(2+)and 5-{1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl}terephthalic acid(H_(2)L)leads to two metal-organic frameworks,[Mg(L)(DMF)_(2)(H_(2)O)_(2)]_(2)·5DMF·2H_(2)O(1)with a 1D structure and... The reaction of Mg^(2+)and 5-{1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl}terephthalic acid(H_(2)L)leads to two metal-organic frameworks,[Mg(L)(DMF)_(2)(H_(2)O)_(2)]_(2)·5DMF·2H_(2)O(1)with a 1D structure and[Mg_(2)(L)_(2)(DMSO)_(3)(H_(2)O)](2)with a 2D(4,4)-net structure.Interestingly,the two compounds exhibit distinct luminescent responses to external mechanical stimuli.1 exhibited exceptional resistance mechanical chromic luminescence(RMCL),which can be attributed to the predominant hydrogen bonds and the presence of high-boiling-point solvent molecules within its structure.2 had a reversible MCL property,which can be attributed to the dominantπ-πweak interactions,coupled with the reversible destruction/restoration of its crystallinity under grinding/fumigation.CCDC:2410963,1;2410964,2. 展开更多
关键词 metal-organic framework crystal structure mechanical chromic luminescence resistance mechanical chromic luminescence weak interaction
在线阅读 下载PDF
Microstructure and mechanical properties of novel SiC-TiC/Al-Mg-Sc-Zr composites prepared by selective laser melting
2
作者 LU Ren-yi MA Guo-nan +4 位作者 BAI Guan-shun ZHAO Wen-tian ZHANG Hui-hua ZHAO Shu-ming ZHUANG Xin-peng 《Journal of Central South University》 2025年第5期1641-1659,共19页
In order to obtain high-density dual-scale ceramic particles(8.5 wt.%SiC+1.5 wt.%TiC)reinforced Al-Mg Sc-Zr composites with uniform microstructure,50 nm TiC and 7μm SiC particles were pre-dispersed into 15−53μm alum... In order to obtain high-density dual-scale ceramic particles(8.5 wt.%SiC+1.5 wt.%TiC)reinforced Al-Mg Sc-Zr composites with uniform microstructure,50 nm TiC and 7μm SiC particles were pre-dispersed into 15−53μm aluminum alloy powders by low-speed ball milling and mechanical mixing technology,respectively.Then,the effects of laser energy density,power and scanning rate on the density of the composites were investigated based on selective laser melting(SLM)technology.The effect of micron-sized SiC and nano-sized TiC particles on solidification structure,mechanical properties and fracture behaviors of the composites was revealed and analyzed in detail.Interfacial reaction and phase variations in the composites with varying reinforced particles were emphatically considered.Results showed that SiC-TiC particles could significantly improve forming quality and density of the SLMed composites,and the optimal relative density was up to 100%.In the process of laser melting,a strong chemical reaction occurs between SiC and aluminum matrix,and micron-scale acicular Al_(4)SiC_(4) bands were formed in situ.There was no interfacial reaction between TiC particles and aluminum matrix.TiC/Al semi-coherent interface had good bonding strength.Pinning effect of TiC particles in grain boundaries could prevent the equiaxial crystals from growing and transforming into columnar crystals,resulting in grain refinement.The optimal ultimate tensile strength(UTS),yield strength(YS),elongation(EL)and elastic modulus of the SiC-TiC/Al-Mg-Sc-Zr composite were~394 MPa,~262 MPa,~8.2%and~86 GPa,respectively.The fracture behavior of the composites included ductile fracture of Al matrix and brittle cleavage fracture of Al_(4)SiC_(4) phases.A large number of cross-distributed acicular Al_(4)SiC_(4) bands were the main factors leading to premature failure and fracture of SiC-TiC/Al-Mg-Sc-Zr composites. 展开更多
关键词 selective laser melting interface structure aluminum matrix composite mechanical properties elastic modulus
在线阅读 下载PDF
Mechanical response and impact tendency index correction of gangue-coal combined structure
3
作者 WEN Zhi-jie XU Chang-long +2 位作者 GONG Feng-qiang ZUO Yu-jun SONG Zhen-qi 《Journal of Central South University》 2025年第6期2288-2306,共19页
To investigate the mechanical response during failure and the impact tendency characteristics of gangue-coal combined structure,uniaxial compression tests were conducted on nine groups of combined structures,each with... To investigate the mechanical response during failure and the impact tendency characteristics of gangue-coal combined structure,uniaxial compression tests were conducted on nine groups of combined structures,each with varying gangue thicknesses and positions.The response patterns of compressive strength,elastic modulus,pre-peak accumulated energy,elastic energy index,and impact energy index were systematically analyzed.Furthermore,a new index for evaluating the impact tendency of gangue-containing coal was proposed,and its effectiveness was verified.The findings are as follows:(1)As the gangue thickness increases,both the compressive strength and the pre-peak energy of the combined structure decrease,whereas the elastic modulus increases accordingly.When the gangue is located in the lower middle position,the combined structure exhibits the lowest compressive strength and elastic modulus but the highest pre peak energy.(2)As the gangue shifts toward the middle position of the combined structure,the failure mode gradually transitions from comple te“crushing”failure to an incomplete“point-type”failure.As gangue thickness further increases,the failure region evolves from overall failure to localized failure,with the degree of failure shifting from complete to incomplete.The K_(crc)value corresponding to“crushing”complete failure is higher and has a stronger impact tendency compared to“point-type”incomplete failure.(3)The proposed comprehensive impact instability evaluation index K_(crc)for the gangue-coal combined structure has shown a significant positive correlation with compressive strength(R_(c))and impact energy index(K_(E)),further verifyi ng its rationality in comprehensively assessing the impact tendency of gangue-containing coal bodies.Applying this index to the evaluation of gangue-containing coal seams provides a more accurate reflection of their impact tendency compared with the residual energy index,which has a wide range of potential applications and practical significance. 展开更多
关键词 gangue-coal combined structure mechanical response peak elastic energy density difference impact tendency comprehensive impact instability index
在线阅读 下载PDF
The technology and mechanism of removal of plastic mulch and land preparation
4
作者 ZHANG Huiyou HOU Shulin +2 位作者 NA Mingjun YANG Xiaoli BAI Shengnan 《Journal of Northeast Agricultural University(English Edition)》 CAS 2007年第1期72-75,共4页
In this article,the characteristic of the field plastic mulch, the craft for mechanization removal and land preparation of plastic mulch and the mechanism frequently used in the removal and land preparation of plasti... In this article,the characteristic of the field plastic mulch, the craft for mechanization removal and land preparation of plastic mulch and the mechanism frequently used in the removal and land preparation of plastic mulch were introduced, which offered references for the design of removal mechanism and land preparation of plastic mulch and structural optimization combination of working components. 展开更多
关键词 mechanism for removal and land preparation removal of plastic film land preparation mechanism structural optimization
在线阅读 下载PDF
Research and application of mechanical models for the whole process of 110 mining method roof structural movement 被引量:12
5
作者 BIAN Wen-hui YANG Jun +2 位作者 HE Man-chao ZHU Chun XU Dong-ming 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第9期3106-3124,共19页
For the 110 mining method,it is challenging to accurately calculate the support resistance of the roadway due to the lack of understanding of the dynamic movement of the overlying strata in this method.The consequenti... For the 110 mining method,it is challenging to accurately calculate the support resistance of the roadway due to the lack of understanding of the dynamic movement of the overlying strata in this method.The consequential excessive support results in a significant increase in the cost of roadway support.The authors explored the overlying strata movement and roadway deformation of the gob-entry retaining in the 110 mining method to solve this problem.First,the typical stages of the roof-cutting gob-side entry were defined.Second,the mechanical model and calculation formula of the support resistance on the roof were explored.Then,using numerical simulation software,the starting ranges of the specific supports at different stages were verified and the feasibility of the support scheme was examined.Finally,combined with the field measurement data,the stress and the deformation of the gob roadway at different stages under the influence of two mining processes in the 110 mining method were obtained.The numerical simulation results obtained are consistent with the field test results,providing a theoretical basis for precision support at different stages by the 110 mining method. 展开更多
关键词 110 mining method gob-side entry retaining roof structure movement mechanical model
在线阅读 下载PDF
External blast flow field evolution and response mechanism of single-layer reticulated dome structure 被引量:5
6
作者 Shao-bo Qi Guang-yan Huang +1 位作者 Xu-dong Zhi Feng Fan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第6期241-253,共13页
Single-layer reticulated dome structure are commonly high-profile building in the public and can be attractive targets for terrorist bombings,so the public can benefit from enhanced safety with a stronger understandin... Single-layer reticulated dome structure are commonly high-profile building in the public and can be attractive targets for terrorist bombings,so the public can benefit from enhanced safety with a stronger understanding of the behavior of single-layer reticulated dome structure under explosion.This paper investigates the fluid-structure interaction process and the dynamic response performance of the singlelayer reticulated dome under external blast load.Both experimental and numerical results shown that structural deformation is remarkably delayed compared with the velocity of blast wave,which advises the dynamic response of large-span reticulated dome structure has a negligible effect on the blast wave propagation under explosion.Four failure modes are identified by comparing the plastic development of each ring and the residual spatial geometric of the structure,i.e.,minor vibration,local depression,severe damage,and overall collapse.The plastic deformation energy and the displacement potential energy of the structure are the main consumers of the blast energy.In addition,the stress performance of the vertex member and the deep plastic ratio of the whole structure can serve as qualitative indicators to distinguish different failure modes. 展开更多
关键词 External blast loading Reticulated dome structure Fluid-structure interaction Dynamic response mode Response mechanism
在线阅读 下载PDF
Numerical investigations on mechanical characteristics and failure mechanism of outwash deposits based on random meso-structures using discrete element method 被引量:3
7
作者 ZHANG Qiang XU Wei-ya +2 位作者 LIU Qin-ya SHEN Jun-liang YAN Long 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第12期2894-2905,共12页
Outwash deposit is a unique type of geological materials, and its features such as heterogeneity, discontinuity and nonlinearity determine the complexity of mechanical characteristics and failure mechanism. In this wo... Outwash deposit is a unique type of geological materials, and its features such as heterogeneity, discontinuity and nonlinearity determine the complexity of mechanical characteristics and failure mechanism. In this work, random meso-structure of outwash deposits was constructed by the technique of computer random simulation based on characteristics of its meso-structure in the statistical sense and some simplifications, and a series of large direct shear tests on numerical samples of outwash deposits with stone contents of 15%, 30%, 45% and 60% were conducted using the discrete element method to further investigate its mechanical characteristics and failure mechanism under external load. The results show that the deformation characteristics and shear strength of outwash deposits are to some extent improved with the increase of stone content, and the shear stress–shear displacement curves of outwash deposits show great differences at the post-peak stage due to the random spatial distribution and content of stones. From the mesoscopic view, normal directions of contacts between "soil" and "stone" particles undergo apparent deflection as the shear displacement continues during the shearing process, accompanying redistribution of the magnitude of contact forces during the shearing process. For outwash deposits, the shear zone formed after shear failure is an irregular stripe due to the movements of stones near the shear zone, and it expands gradually with the increase of stone content. In addition, there is an approximately linear relation between the mean increment of internal friction angle and the stone content lying between 30% and 60%, and a concave nonlinear relation between the mean increment of cohesion and stone content, which are in good agreement with the existing research results. 展开更多
关键词 outwash DEPOSITS RANDOM meso-structures DISCRETE ELEMENT method NUMERICAL tests mechanical characteristics FAILURE mechanism
在线阅读 下载PDF
Research Status of High-Entropy Alloys Based on Artificial Intelligence Technology
8
作者 YU Zhiqi ZHAO Yanchun +5 位作者 XUE Baorui DANG Wenxia MA Huwen SU Yu LAN Yunbo FENG Li 《有色金属(中英文)》 北大核心 2025年第5期735-747,共13页
High-Entropy Alloys(HEAs)exhibit significant potential across multiple domains due to their unique properties.However,conventional research methodologies face limitations in composition design,property prediction,and ... High-Entropy Alloys(HEAs)exhibit significant potential across multiple domains due to their unique properties.However,conventional research methodologies face limitations in composition design,property prediction,and process optimization,characterized by low efficiency and high costs.The integration of Artificial Intelligence(AI)technologies has provided innovative solutions for HEAs research.This review presented a detailed overview of recent advancements in AI applications for structural modeling and mechanical property prediction of HEAs.Furthermore,it discussed the advantages of big data analytics in facilitating alloy composition design and screening,quality control,and defect prediction,as well as the construction and sharing of specialized material databases.The paper also addressed the existing challenges in current AI-driven HEAs research,including issues related to data quality,model interpretability,and cross-domain knowledge integration.Additionally,it proposed prospects for the synergistic development of AI-enhanced computational materials science and experimental validation systems. 展开更多
关键词 high-entropy alloys artificial intelligence structural modeling mechanical property big data
在线阅读 下载PDF
Al合金化对CoFeNiV基高熵合金微观组织和力学性能的影响
9
作者 冯正中 王璐 杨林 《热加工工艺》 北大核心 2025年第7期75-79,共5页
采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、电子背散射衍射(EBSD)和万能试验机等,研究了不同Al含量对CoFeNiVAl_(x)(x=0~1)高熵合金微观组织与力学性能的影响。结果表明:Al元素的添加促进BCC相的形成,CoFeNiVAl_(x)显微组织由柱状晶... 采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、电子背散射衍射(EBSD)和万能试验机等,研究了不同Al含量对CoFeNiVAl_(x)(x=0~1)高熵合金微观组织与力学性能的影响。结果表明:Al元素的添加促进BCC相的形成,CoFeNiVAl_(x)显微组织由柱状晶转变为等轴晶。BCC+FCC双相结构使得合金屈服强度提升的同时保留了良好的塑性。其中,CoFeNiVAl_(0.5)合金拥有1272 MPa的高屈服强度和32%的塑性应变。 展开更多
关键词 高熵合金 相结构 微观组织 力学性能
在线阅读 下载PDF
猪源Cathelicidins抗菌肽家族的研究进展
10
作者 马文强 冯杰 王燕 《饲料工业》 2007年第21期11-13,共3页
Cathelicidins是一类在哺乳动物中发现的含有保守的cathelin区域的抗菌肽,是宿主防御系统的重要组成部分,具有广谱且强大的抗菌活性。文中综述了猪源Cathelicidins抗菌肽家族的基因组成、结构、抗菌活性、作用机制及应用前景。
关键词 CAtheLICIDINS 抗菌肽 结构 作用机理
在线阅读 下载PDF
Wave propagation control in periodic track structure through local resonance mechanism 被引量:10
11
作者 WANG Ping YI Qiang +2 位作者 ZHAO Cai-you XING Meng-ting LU J 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第12期3062-3074,共13页
Excessive vibration and noise radiation of the track structure can be caused by the operation of high speed trains.Though the track structure is characterized by obvious periodic properties and band gaps,the bandwidth... Excessive vibration and noise radiation of the track structure can be caused by the operation of high speed trains.Though the track structure is characterized by obvious periodic properties and band gaps,the bandwidth is narrow and the elastic wave attenuation capability within the band gap is weak.In order to effectively control the vibration and noise of track structure,the local resonance mechanism is introduced to broaden the band gap and realize wave propagation control.The locally resonant units are attached periodically on the rail,forming a new locally resonant phononic crystal structure.Then the tuning of the elastic wave band gaps of track structure is discussed,and the formation mechanism of the band gap is explicated.The research results show that a new wide and adjustable locally resonant band gap is formed after the resonant units are introduced.The phenomenon of coupling and transition can be observed between the new locally resonant band gap and the original band gap of the periodic track structure with the band gap width reaching the maximum at the coupling position.The broader band gap can be applied for vibration and noise reduction in high speed railway track structure. 展开更多
关键词 wave propagation control periodic track structure band gap local resonance mechanism transfer matrix
在线阅读 下载PDF
Analysis of steel-concrete composite structure with overlap slab of Xingguang bridge 被引量:5
12
作者 叶梅新 黄琼 吴芹芹 《Journal of Central South University of Technology》 EI 2007年第1期120-124,共5页
Finite element modeling methods of steel-concrete composite structure with overlap slab were investigated. A two-step finite element method was presented. It was applied to analyze an extra long span composite bridge.... Finite element modeling methods of steel-concrete composite structure with overlap slab were investigated. A two-step finite element method was presented. It was applied to analyze an extra long span composite bridge. The conversion of structure system and the mechanical behavior of the bridge were analyzed with two different construction methods. The stresses of steel beams, precast slabs and in-situ-place concrete under the total load were compared. The results show that steel-concrete composite structure with overlap slab has many advantages, the construction method that the top in-situ concrete and the concrete in construction joints are cast respectively is rather reasonable than the one that the top in-situ concrete and the concrete in construction joints are cast at the same time, and the two-step finite element method is affective to such large-scale structures. 展开更多
关键词 composite structure numerical method two-step finite element method mechanical behavior
在线阅读 下载PDF
Mechanical genesis of Henan(China) Yima thrust nappe structure 被引量:2
13
作者 蔡武 窦林名 +3 位作者 何江 刘海顺 李振雷 丁言露 《Journal of Central South University》 SCIE EI CAS 2014年第7期2857-2865,共9页
Considering the serious coal and rock dynamic disasters around the main slip plane called F16 in the coal mining area) of Henan Yima(China) thrust nappe structure,the mechanical genesis of the Yima thrust nappe struct... Considering the serious coal and rock dynamic disasters around the main slip plane called F16 in the coal mining area) of Henan Yima(China) thrust nappe structure,the mechanical genesis of the Yima thrust nappe structure was studied comprehensively using geomechanics,fault mechanics,elastic mechanics,and Coulomb's law of friction.First,using the centrifugal inertia force of Earth's rotation as a source,a mechanical model of N-S compression superimposed with W-E reverse torsion was established to explain the formation of the early Yima coal basin and Jurassic Yima Group coal measures.Second,an equation for the ultimate stress in the forming stage of F16 was derived using the plastic slip-line field theory and the parabolic Mohr failure criterion.Moreover,the distribution of ultimate stress and the geometric characteristics of the fault profile were obtained using the field model parameters.Finally,the stress field of F16 and the mechanical genesis of the large-scale reverse thrust sheet were discussed based on elastic mechanics theory and Coulomb's law of friction.The results show that the tectonic framework of the early Yima coal basin and the formation pattern of Jurassic Yima Group coal measures given by the model are consistent with the in-situ explorations.The geometric characteristics of the fault profile obtained by numerical calculation can better reflect the shape of F16 in its forming stage,and the mechanical genesis of the large-scale reverse thrust sheet also concurred with the field situations.Thus,this work can provide a foundation for further studies on the genesis of the thrust nappe structure,the mechanism of rock bursts induced by F16,and the characteristics of the residual stress field in the Yima mining area. 展开更多
关键词 mechanical genesis thrust nappe structure centrifugal inertia force fault mechanics slip-line field theory Coulomb's law of friction
在线阅读 下载PDF
Finite element analysis on nut post structure of Three Gorges Project ship lift 被引量:2
14
作者 石端伟 蔡栋材 吴志纯 《Journal of Central South University》 SCIE EI CAS 2009年第4期614-620,共7页
A nonlinear finite element model of the nut post reinforced concrete (RC) structure of the safety mechanism in the Three Gorges Project (TGP) ship lift was built by ANSYS software. Some irregular structures such a... A nonlinear finite element model of the nut post reinforced concrete (RC) structure of the safety mechanism in the Three Gorges Project (TGP) ship lift was built by ANSYS software. Some irregular structures such as the nut post and the rotary rod were divided by curved surface into a series of regular parts, and the structures were all meshed to hexahedron. Constraint equations were defined between two interfaces with different element sizes and mesh patterns. PRETS179 elements were used to simulate the preload in the tendons and the pre-stressed screws, and the loss of prestressing force was calculated. Five extreme load cases were analyzed. The stress of each part in the structure was obtained. The results indicate that the maximum compressive stress of concrete C35 is 24.13 MPa, so the concrete may be partially crushed; the maximum tensile stress of the grouting motar is 6.73 MPa, so the grouting motar may partially fracture; the maximum yon Mises stress of the rotary rod is 648.70 MPa, therefore the rotary rod may partially yield. 展开更多
关键词 ship lift safety mechanism nut post reinforced concrete structure finite element analysis
在线阅读 下载PDF
Hydro-mechanical coupling mechanism on joint of clay core-wall and concrete cut-off wall 被引量:3
15
作者 罗玉龙 詹美礼 +1 位作者 盛金昌 吴强 《Journal of Central South University》 SCIE EI CAS 2013年第9期2578-2585,共8页
The joint of clay core-wall and concrete cut-off wall is one of the weakest parts in high earth and rockftll dams.A kind of highly plastic clay is always fixed on the joint to fit the large shear deformation between c... The joint of clay core-wall and concrete cut-off wall is one of the weakest parts in high earth and rockftll dams.A kind of highly plastic clay is always fixed on the joint to fit the large shear deformation between clay core-wall and concrete cut-offwall,so the hydro-mechanical coupling mechanisms on the joint under high stress,high hydraulic gradient,and large shear deformation are of great importance for the evaluation of dam safety.The hydro-mechanical coupling characteristics of the joint of the highly plastic clay and the concrete cut-off wall in a high earth and rockfill dam in China were studied by using a newly designed soil-structure contact erosion apparatus.The experimental results indicate that:1) Shear failure on the joint is due to the hydro-mechanical coupling effect of stress and seepage failure.The seepage failure will induce the final shear failure when the ratio of deviatoric stress to confining pressure is within 1.0-1.2; 2) A negative exponential permeability empirical model for the joint denoted by a newly defined principal stress function,which considers the coupling effect of confining pressure and axial pressure on the permeability,is established based on hydro-mechanical coupling experiments.3) The variation of the settlement before and after seepage failure is very different.The settlement before seepage failure changes very slowly,while it increases significantly after the seepage failure.4) The stress-strain relationship is of a strain softening type.5) Flow along the joint still follows Darcian flow rule.The results will provide an important theoretical basis for the further evaluation on the safety of the high earth and rockfill dam. 展开更多
关键词 high earth and rockfill dam soil/structure interface hydro-mechanical coupling mechanism seepage failure shear failure
在线阅读 下载PDF
Structure and mechanical properties of ZrO_2-mullite nano-ceramics in SiO_2-Al_2O_3-ZrO_2 system 被引量:4
16
作者 梁叔全 谭小平 +1 位作者 李少强 唐艳 《Journal of Central South University of Technology》 EI 2007年第1期1-6,共6页
ZrO2-mullite nano-ceramics were fabricated by in-situ controlled crystallizing from SiO2-Al2O3-ZrO2 amorphous bulk. The thermal transformation sequences of the SiO2-Al2O3-ZrO2 amorphous bulk were investigated by X-ray... ZrO2-mullite nano-ceramics were fabricated by in-situ controlled crystallizing from SiO2-Al2O3-ZrO2 amorphous bulk. The thermal transformation sequences of the SiO2-Al2O3-ZrO2 amorphous bulk were investigated by X-ray diffraction, infrared spectrum, scanning electron microscope and differential scanning calorimetric. And the mechanical properties of the nano-ceramics were studied. The results show that the bulks are still in amorphous state at 900 ℃ and the t-ZrO2 forms at about 950 ℃ with a faint spinel-like phase which changes into mullite on further heating. ZrO2 and mullite become major phases at 1 100 ℃ and an amount of m-ZrO2 occur at the same time. The sample heated at 950 ℃ for 2 h and then at 1 100 ℃ for 1 h shows very dense and homogenous microstructure with ball-like grains in size of 20-50 nm. With the increase of crystallization temperature up to 1 350 ℃, the grains grow quickly and some grow into lath-shaped grains with major diameter of 5 μm. After two-step treatment the highest micro-hardness, flexural strength and fracture toughness of the samples are 13.72 GPa, 520 MPa and 5.13 MPa·m1/2, respectively. 展开更多
关键词 SiO2-Al2O3-ZrO2 system amorphous bulk heat treatment structural change mechanical properties
在线阅读 下载PDF
Deep Earth Processes,Their Effects in the Interior,on the Surface,to Living Organims and Biodiversities
17
作者 Didas Makoye M Malimi Sapiance 《地学前缘》 EI CAS CSCD 北大核心 2009年第S1期215-216,共2页
Interior earth is very hot but consists of concentric layers of varying chemical compositions,pressure and temperature.The concentric layers(shells)are the crust which is the outermost shell,mantle which is the middle... Interior earth is very hot but consists of concentric layers of varying chemical compositions,pressure and temperature.The concentric layers(shells)are the crust which is the outermost shell,mantle which is the middle layer and core which is the innermost part of the earth.The various mechanisms such as 展开更多
关键词 INTERNAL structure of the EARTH driving force mechanisms products and theIR EFFECTS solutions
在线阅读 下载PDF
Nacre-inspired interface structure design of polymer bonded explosives toward significantly enhanced mechanical performance
18
作者 Peng Wang You-long Chen +6 位作者 Li Meng Yin-shuang Sun Yu Dai Xin Li Jie Chen Zhi-jian Yang Guan-song He 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第9期83-92,共10页
Realizing effective enhancement to the structure of interface region between explosive crystals and polymer binder plays a key role in improving the mechanical properties of the current polymer bonded explosives(PBXs)... Realizing effective enhancement to the structure of interface region between explosive crystals and polymer binder plays a key role in improving the mechanical properties of the current polymer bonded explosives(PBXs).Herein,inspired by the structure of natural nacre which possesses outstanding mechanical performance,a kind of nacre-like structural layer is constructed in the interface region of PBXs composites,making use of two-dimensional graphene sheets and one-dimensional bio-macromolecules of cellulose as inorganic and organic building blocks,respectively.Our results reveal that the constructed nacre-like structural layer can effectively improve the interfacial strength and then endow the PBXs composites with significantly enhanced mechanical properties involving of creep resistance,Brazilian strength and fracture toughness,demonstrating the obvious advantage of such bioinspired interface structure design strategy.In addition,the thermal conduction performance of PBXs composites also exhibits noticeable enhancement due to the remarkable phonon transport capability endowed by the asdesigned nacre-like structural layer.We believe this work provides a novel design route to conquer the issue of weak interfacial strength in PBXs composites and greatly increase the comprehensive properties for better meeting the higher requirements proposed to the explosive part of weapon equipment in new era. 展开更多
关键词 Polymer bonded explosives Nacre-like structural layer GRAPHENE CELLULOSE Mechanical properties
在线阅读 下载PDF
Analysis of static structural mechanics of vertical axis wind turbine with lift-drag combined starting structures
19
作者 QU Chunming FENG Fang +2 位作者 LI Yan BAI Yuedi ZHAO Bin 《排灌机械工程学报》 CSCD 北大核心 2021年第9期923-928,共6页
The finite element analysis was carried out for a composite vertical axis wind turbine with lift-drag combined starting structures to ensure the structure safety of a vertical axis wind turbine(VAWT).The static and mo... The finite element analysis was carried out for a composite vertical axis wind turbine with lift-drag combined starting structures to ensure the structure safety of a vertical axis wind turbine(VAWT).The static and modal analysis of rotor of a composite vertical axis wind turbine was conducted by using ANSYS software.The relevant contour sketch of stress and deformation was obtained.The analysis was made for static structural mechanics,modal analysis of rotor and the total deformation and vibration profile to evaluate the influence on the working capability of the rotor.The analysis results show that the various structure parameters lie in the safety range of structural mechanics in the relative standards.The analysis showing the design safe to operate the rotor of a vertical axis wind turbine.The methods used in this study can be used as a good reference for the structural mechanics′analysis of VAWTs. 展开更多
关键词 vertical axis wind turbine finite element analysis static structural mechanics lift-drag combined starting structure model analysis
在线阅读 下载PDF
THE UPWARPING AND DOWNWARPING STRUCTURAL SYSTEM OF MOHO—SURFACE IN CHINESE AND NEAR REGION AND THE GENETIC MECHANICS OF QINGHAI—TIBET PLATEAU TECTONIC
20
作者 Zhang Jingfa,Tang Rongyu,Chen Xuebo,Wang Enfu,Li Jingshen 《地学前缘》 EI CAS CSCD 2000年第S1期366-367,共2页
Recently, this study group established “the map of MOHO\|surface bathymetric line in Chinese and Near Region" on the basis of latest survey and study of the crustal depth, the preliminary result shows that the r... Recently, this study group established “the map of MOHO\|surface bathymetric line in Chinese and Near Region" on the basis of latest survey and study of the crustal depth, the preliminary result shows that the regular meridional and latitudinal upwarping and downwarping structural pattern of MOHO\|surface bathymetric line among Eurasian plate and Pacific plate and the Indian plate alternately appears, and which is accreted and coupled with basin ridge structure that exist shallow crustal base, continental crust and oceanic crust and others regular upwarping and downwarping net structure system that possessing different block characters and different scales exist together. Among different structure systems, it occurs that ramp downwarping impetus transform structure belts whose trends is characteristic. Nowadays upwarping and downwarping net structure system is basically modeled in Himalayan orogeny period. It is showed that the Earth revolution way has been changed in this period, which leaded to a new Earth dynamics cycle.The pattern of upwarping and downwarping structure among different structure systems or different structure blocks , and the characters of different trends and different scale transform structure belts, reflects the structure movement way and their conversion law, and reveals the Earth centralized dynamics mechanics that is produced by the revolutionary effect under the environments of aster system. This can be clearly reflected by the change of impetus way between Qinghai—Tibet highland structure system and near structure system. 展开更多
关键词 Moho\|surface structural system genetic mechanics tectonic Qin ghai—Tibet
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部