Compared with the one-dimensional trajectory correction technology which adjusts longitudinal range, not only does the two-dimensional trajectory correction technology adjust the force in velocity direction, but also ...Compared with the one-dimensional trajectory correction technology which adjusts longitudinal range, not only does the two-dimensional trajectory correction technology adjust the force in velocity direction, but also need to modulate the lateral force or trajectory (perpendicular to the vertical plane of fire direction). Therefore, the structure of control cabin of two-dimensional trajectory correction projectile (TDTCP) is more complicated than that of one-dimensional trajectory correction projectile (ODTCP). To simplify the structure of control cabin of TDTCP and reduce the cost, a scheme of adding a damping disk to the control cabin of ODTCP has been developed recently. The damping disk is unfolded at the right moment during its flight to change the ballistic drift of spin stabilized projectile. For this technical scheme of TDTCP, a fast and accurate impact point prediction method based on extended Kalman filter is presented. An approximate formula for predicting the ballistic drift and trajectory correction quantity is deduced. And the lateral correction capability for different fire angles and its influencing factors are analyzed. All the work is valuable for further research.展开更多
An impact point prediction(IPP) guidance based on supervised learning is proposed to address the problem of precise guidance for the ballistic missile in high maneuver penetration condition.An accurate ballistic traje...An impact point prediction(IPP) guidance based on supervised learning is proposed to address the problem of precise guidance for the ballistic missile in high maneuver penetration condition.An accurate ballistic trajectory model is applied to generate training samples,and ablation experiments are conducted to determine the mapping relationship between the flight state and the impact point.At the same time,the impact point coordinates are decoupled to improve the prediction accuracy,and the sigmoid activation function is improved to ameliorate the prediction efficiency.Therefore,an IPP neural network model,which solves the contradiction between the accuracy and the speed of the IPP,is established.In view of the performance deviation of the divert control system,the mapping relationship between the guidance parameters and the impact deviation is analysed based on the variational principle.In addition,a fast iterative model of guidance parameters is designed for reference to the Newton iteration method,which solves the nonlinear strong coupling problem of the guidance parameter solution.Monte Carlo simulation results show that the prediction accuracy of the impact point is high,with a 3 σ prediction error of 4.5 m,and the guidance method is robust,with a 3 σ error of 7.5 m.On the STM32F407 singlechip microcomputer,a single IPP takes about 2.374 ms,and a single guidance solution takes about9.936 ms,which has a good real-time performance and a certain engineering application value.展开更多
人工智能(AI)和物联网(IoT)技术的迅速发展,对计算能效提出了更高的要求,终端设备在硬件资源开销方面同样面临巨大挑战.为了应对能效问题,新型低功耗近似计算单元的设计得到了广泛研究.在数字信号处理和图像处理等应用场景中,存在大量...人工智能(AI)和物联网(IoT)技术的迅速发展,对计算能效提出了更高的要求,终端设备在硬件资源开销方面同样面临巨大挑战.为了应对能效问题,新型低功耗近似计算单元的设计得到了广泛研究.在数字信号处理和图像处理等应用场景中,存在大量的浮点运算.这些应用消耗了大量的硬件资源,但它们具有一定的容错性,没有必要进行完全精确的计算.据此,提出了一种基于移位近似算法MTA(multiplication to shift addition)和非对称截断的单精度可重构近似浮点乘法器设计方法.首先,采用了一种低功耗的近似算法MTA,将部分操作数的乘法运算转换为移位加法.其次,为了在精度和成本之间取得平衡,设计了针对操作数高有效位的非对称截断处理,并对截断后保留的部分进行精确计算.通过采用不同位宽的MTA近似计算和改变截断后部分积阵列的行数,生成了广阔的设计空间,从而可以在精度和成本之间进行多种权衡调整.与精确浮点乘法器相比,所提出设计MTA5T5的精度损失(MRED)仅约为0.32%,功耗降低了85.80%,面积减少了79.53%.对于精度较低的MTA3T3,其精度损失约为1.92%,而功耗和面积分别降低了90.55%和85.80%.最后,进行了FIR滤波和图像处理的应用测试,结果表明所提出的设计在精度和开销方面具有显著优势.展开更多
利用中国区域2023年夏季945个地基全球导航卫星系统(GNSS)测站的观测数据,分别采用双差网解法与精密单点定位法(Precise Point Positioning,PPP)对大气可降水量(Precipitable Water Vapor,PWV)进行了反演,以同址探空站和ERA5再分析资料...利用中国区域2023年夏季945个地基全球导航卫星系统(GNSS)测站的观测数据,分别采用双差网解法与精密单点定位法(Precise Point Positioning,PPP)对大气可降水量(Precipitable Water Vapor,PWV)进行了反演,以同址探空站和ERA5再分析资料的PWV为参考值,研究分析了两种方法在中国不同气候区域反演PWV的精度及稳定性特征。结果表明:与PPP解相比,双差解与探空和ERA5资料的PWV的相关性更强,偏差(Bias)频率分布更集中,峰值区概率更高,偏差范围更小。以探空资料获取的RS-PWV为参考值时,双差解与PPP解的平均Bias分别为-0.1 mm和1.1 mm,平均均方根误差(RMSE)分别为2.4 mm和3.1 mm,以ERA5-PWV为参考值时,双差解与PPP解的平均Bias分别为-0.2 mm和0.1 mm,平均RMSE分别为2.7 mm和3.2 mm,双差解的平均RMSE均小于3 mm,这表明双差网解法反演的PWV具有更高的精度和稳定性。GNSS探测水汽的精度总体表现为西部非季风区优于东部季风区,双差解在各气候区域的RMSE都更集中于中位数附近,而PPP解在不同测站多表现出不同的精度水平,在水汽充足且探测精度偏低的温带和亚热带季风气候区域精度离散程度较大,具有较强的不稳定性。展开更多
文摘Compared with the one-dimensional trajectory correction technology which adjusts longitudinal range, not only does the two-dimensional trajectory correction technology adjust the force in velocity direction, but also need to modulate the lateral force or trajectory (perpendicular to the vertical plane of fire direction). Therefore, the structure of control cabin of two-dimensional trajectory correction projectile (TDTCP) is more complicated than that of one-dimensional trajectory correction projectile (ODTCP). To simplify the structure of control cabin of TDTCP and reduce the cost, a scheme of adding a damping disk to the control cabin of ODTCP has been developed recently. The damping disk is unfolded at the right moment during its flight to change the ballistic drift of spin stabilized projectile. For this technical scheme of TDTCP, a fast and accurate impact point prediction method based on extended Kalman filter is presented. An approximate formula for predicting the ballistic drift and trajectory correction quantity is deduced. And the lateral correction capability for different fire angles and its influencing factors are analyzed. All the work is valuable for further research.
基金supported by the National Natural Science Foundation of China (Grant No.62103432)supported by Young Talent fund of University Association for Science and Technology in Shaanxi, China(Grant No.20210108)。
文摘An impact point prediction(IPP) guidance based on supervised learning is proposed to address the problem of precise guidance for the ballistic missile in high maneuver penetration condition.An accurate ballistic trajectory model is applied to generate training samples,and ablation experiments are conducted to determine the mapping relationship between the flight state and the impact point.At the same time,the impact point coordinates are decoupled to improve the prediction accuracy,and the sigmoid activation function is improved to ameliorate the prediction efficiency.Therefore,an IPP neural network model,which solves the contradiction between the accuracy and the speed of the IPP,is established.In view of the performance deviation of the divert control system,the mapping relationship between the guidance parameters and the impact deviation is analysed based on the variational principle.In addition,a fast iterative model of guidance parameters is designed for reference to the Newton iteration method,which solves the nonlinear strong coupling problem of the guidance parameter solution.Monte Carlo simulation results show that the prediction accuracy of the impact point is high,with a 3 σ prediction error of 4.5 m,and the guidance method is robust,with a 3 σ error of 7.5 m.On the STM32F407 singlechip microcomputer,a single IPP takes about 2.374 ms,and a single guidance solution takes about9.936 ms,which has a good real-time performance and a certain engineering application value.
文摘人工智能(AI)和物联网(IoT)技术的迅速发展,对计算能效提出了更高的要求,终端设备在硬件资源开销方面同样面临巨大挑战.为了应对能效问题,新型低功耗近似计算单元的设计得到了广泛研究.在数字信号处理和图像处理等应用场景中,存在大量的浮点运算.这些应用消耗了大量的硬件资源,但它们具有一定的容错性,没有必要进行完全精确的计算.据此,提出了一种基于移位近似算法MTA(multiplication to shift addition)和非对称截断的单精度可重构近似浮点乘法器设计方法.首先,采用了一种低功耗的近似算法MTA,将部分操作数的乘法运算转换为移位加法.其次,为了在精度和成本之间取得平衡,设计了针对操作数高有效位的非对称截断处理,并对截断后保留的部分进行精确计算.通过采用不同位宽的MTA近似计算和改变截断后部分积阵列的行数,生成了广阔的设计空间,从而可以在精度和成本之间进行多种权衡调整.与精确浮点乘法器相比,所提出设计MTA5T5的精度损失(MRED)仅约为0.32%,功耗降低了85.80%,面积减少了79.53%.对于精度较低的MTA3T3,其精度损失约为1.92%,而功耗和面积分别降低了90.55%和85.80%.最后,进行了FIR滤波和图像处理的应用测试,结果表明所提出的设计在精度和开销方面具有显著优势.