To investigate the overall performance of reverse energy bypass scramjet,firstly a variable spe⁃cific heat method combined with a chemical balance calculation module for combustion products were used to es⁃tablish a b...To investigate the overall performance of reverse energy bypass scramjet,firstly a variable spe⁃cific heat method combined with a chemical balance calculation module for combustion products were used to es⁃tablish a benchmark scramjet performance evaluation model.Based on the test data of typical flying point of Mach 7 with the altitude of 29 km,the reliability of the model was verified.The deviations of parameters such as the to⁃tal pressure loss of combustor between the model and the test data were analyzed.Furtherly,an analytical method for post-combustion magnetohydrodynamic power generation was established;by embedding the above method into the overall performance evaluation model,performance prediction considering the power generation effect was realized.Finally,based on the above model,variety regulations of the inlet and the outlet parameters of the power generation channel and performance parameters including the engine specific impulse and the unit thrust under different enthalpy extraction ratios and load factors were analyzed.It could be concluded that the model can reliably predict the variations of key parameters.As the value of the load factor increases,the value of the conduc⁃tivity required to reach the specified enthalpy extraction ratio first decreases and then increases,which is approxi⁃mately parabolic.In order to reduce the demand for the gas conductivity for MHD power generation,the load fac⁃tor should be around 0.5.When the load factor is 0.4 and the magnetic induction intensity is 2.5 T,if the enthalpy extraction ratio reaches 0.5%,the engine specific impulse performance reduces about 3.58%.展开更多
Both analyzing a large amount of space weather observed data and alleviating personal experience bias are significant challenges in generating artificial space weather forecast products.With the use of natural languag...Both analyzing a large amount of space weather observed data and alleviating personal experience bias are significant challenges in generating artificial space weather forecast products.With the use of natural language generation methods based on the sequence-to-sequence model,space weather forecast texts can be automatically generated.To conduct our generation tasks at a fine-grained level,a taxonomy of space weather phenomena based on descriptions is presented.Then,our MDH(Multi-Domain Hybrid)model is proposed for generating space weather summaries in two stages.This model is composed of three sequence-to-sequence-based deep neural network sub-models(one Bidirectional Auto-Regressive Transformers pre-trained model and two Transformer models).Then,to evaluate how well MDH performs,quality evaluation metrics based on two prevalent automatic metrics and our innovative human metric are presented.The comprehensive scores of the three summaries generating tasks on testing datasets are 70.87,93.50,and 92.69,respectively.The results suggest that MDH can generate space weather summaries with high accuracy and coherence,as well as suitable length,which can assist forecasters in generating high-quality space weather forecast products,despite the data being starved.展开更多
The reverse magnetohydrodynamic(MHD)energy bypass technology is a promising energy redis⁃tribution technology in the scramjet system,in augmented with a power generation equipment to supply the neces⁃sary long-distanc...The reverse magnetohydrodynamic(MHD)energy bypass technology is a promising energy redis⁃tribution technology in the scramjet system,in augmented with a power generation equipment to supply the neces⁃sary long-distance flight airframe power.In this paper,a computational model of the scramjet magnetohydrody⁃namic channel is developed and verified by using the commercial software Fluent.It is found that when the mag⁃netic induction intensity is 1,2,3,4 T,the power generation efficiency is 22.5%,22.3%,22.0%,21.5%,and decreases with the increase of the magnetic induction intensity,and the enthalpy extraction rate is 0.026%,0.1%,0.21%,0.34%,and increases with the increase of the magnetic induction intensity.The deceleration ef⁃fect of electromagnetic action on the airflow in the power channel increases with the increase of magnetic induc⁃tion intensity.The stronger the magnetic field intensity,the more obvious the decreasing effect of fluid Mach num⁃ber in the channel.The power generation efficiency decreases as the magnetic induction intensity increases and the enthalpy extraction rate is reversed.As the local currents gathering at inlet and outlet of the power generation area,total temperature and enthalpy along the flow direction do not vary linearly,and there are maximum and minimum values at inlet and outlet.Increasing the number of electrodes can effectively regulate the percentage of Joule heat dissipation,which can improve the power generation efficiency.展开更多
The automatic stealth task of military time-sensitive targets plays a crucial role in maintaining national military security and mastering battlefield dynamics in military applications.We propose a novel Military Time...The automatic stealth task of military time-sensitive targets plays a crucial role in maintaining national military security and mastering battlefield dynamics in military applications.We propose a novel Military Time-sensitive Targets Stealth Network via Real-time Mask Generation(MTTSNet).According to our knowledge,this is the first technology to automatically remove military targets in real-time from videos.The critical steps of MTTSNet are as follows:First,we designed a real-time mask generation network based on the encoder-decoder framework,combined with the domain expansion structure,to effectively extract mask images.Specifically,the ASPP structure in the encoder could achieve advanced semantic feature fusion.The decoder stacked high-dimensional information with low-dimensional information to obtain an effective mask layer.Subsequently,the domain expansion module guided the adaptive expansion of mask images.Second,a context adversarial generation network based on gated convolution was constructed to achieve background restoration of mask positions in the original image.In addition,our method worked in an end-to-end manner.A particular semantic segmentation dataset for military time-sensitive targets has been constructed,called the Military Time-sensitive Target Masking Dataset(MTMD).The MTMD dataset experiment successfully demonstrated that this method could create a mask that completely occludes the target and that the target could be hidden in real time using this mask.We demonstrated the concealment performance of our proposed method by comparing it to a number of well-known and highly optimized baselines.展开更多
Methanol is regarded as an important liquid fuel for hydrogen storage, transportation, and in-situ generation due to its convenient conveyance, high energy density, and low conversion temperature. In this work, an ove...Methanol is regarded as an important liquid fuel for hydrogen storage, transportation, and in-situ generation due to its convenient conveyance, high energy density, and low conversion temperature. In this work, an overview of state-of-the-art investigations on methanol reforming is critically summarized, including the detailed introduction of methanol conversion pathways from the perspective of fuel cell applications, various advanced materials design for catalytic methanol conversion, as well as the development of steam methanol reformers. For the section of utilization pathways, reactions such as steam reforming of methanol, partial oxidation of methanol, oxidative steam reforming of methanol, and sorption-enhanced steam methanol reforming were elaborated;For the catalyst section, the strategies to enhance the catalytic activity and other comprehensive performances were summarized;For the reactor section, the newly designed steam methanol reformers were thoroughly described. This review will benefit researchers from both fundamental research and fuel cell applications in the field of catalyzing methanol to hydrogen.展开更多
Grey sequence generation can draw out and develop implied rules of the original data. Different kinds of generation methods were summarized and classified into two types: partial generation and whole generation. The a...Grey sequence generation can draw out and develop implied rules of the original data. Different kinds of generation methods were summarized and classified into two types: partial generation and whole generation. The average generation and stepwise ratio generation is disussed , the preference generation is regard as a special case of proportional division based on analysis geometric theory, propose an idea of using concave and convex status of discrete data to determine the generation coefficient. Based on the stepwise and smooth ratio generation, a tendency average generation is proposed and have a comparison using the data provided in papers listed in the references. The comparison proves that the new generation is better than the other two generations and errors are obviously reduced.展开更多
An essential step for the realization of free-form surface structures is to create an efficient structural gird that satisfies not only the architectural aesthetics,but also the structural performance.Employing the ma...An essential step for the realization of free-form surface structures is to create an efficient structural gird that satisfies not only the architectural aesthetics,but also the structural performance.Employing the main stress trajectories as the representation of force flows on a free-form surface,an automatic grid generation approach is proposed for the architectural design.The algorithm automatically plots the main stress trajectories on a 3D free-form surface,and adopts a modified advancing front meshing technique to generate the structural grid.Based on the proposed algorithm,an automatic grid generator named "St-Surmesh" is developed for the practical architectural design of free-form surface structure.The surface geometry of one of the Sun Valleys in Expo Axis for the Expo Shanghai 2010 is selected as a numerical example for validating the proposed approach.Comparative studies are performed to demonstrate how different structural grids affect the design of a free-form surface structure.展开更多
The hypersonic interception in near space is a great challenge because of the target’s unpredictable trajectory, which demands the interceptors of trajectory cluster coverage of the predicted area and optimal traject...The hypersonic interception in near space is a great challenge because of the target’s unpredictable trajectory, which demands the interceptors of trajectory cluster coverage of the predicted area and optimal trajectory modification capability aiming at the consistently updating predicted impact point(PIP) in the midcourse phase. A novel midcourse optimal trajectory cluster generation and trajectory modification algorithm is proposed based on the neighboring optimal control theory. Firstly, the midcourse trajectory optimization problem is introduced; the necessary conditions for the optimal control and the transversality constraints are given.Secondly, with the description of the neighboring optimal trajectory existence theory(NOTET), the neighboring optimal control(NOC)algorithm is derived by taking the second order partial derivations with the necessary conditions and transversality conditions. The revised terminal constraints are reversely integrated to the initial time and the perturbations of the co-states are further expressed with the states deviations and terminal constraints modifications.Thirdly, the simulations of two different scenarios are carried out and the results prove the effectiveness and optimality of the proposed method.展开更多
The cooperative interception trajectories generation of multiple interceptors to hypersonic targets is studied.First,to solve the problem of on-line trajectory generation of the single interceptor,a generation method ...The cooperative interception trajectories generation of multiple interceptors to hypersonic targets is studied.First,to solve the problem of on-line trajectory generation of the single interceptor,a generation method based on neighborhood optimal control is adopted.Then,when intercepting the strong maneuvering targets,the single interceptor is insufficient in maneuverability,therefore,an on-line multiple trajectories generation algorithm is proposed,which uses the multiple interceptors intercept area(IIA)to cover the target's predicted intercept area(PIA)cooperatively.Through optimizing the interceptors'zero control terminal location,the trajectories are generated on-line by using the neighborhood optimal control method,these trajectories could make the IIA maximally cover the PIA.The simulation results show that the proposed method can greatly improve the interception probability,which provides a reference for the collaborative interception of multiple interceptors.展开更多
Heat transfer and entropy generation of developing laminar forced convection flow of water-Al_2O_3 nanofluid in a concentric annulus with constant heat flux on the walls is investigated numerically. In order to determ...Heat transfer and entropy generation of developing laminar forced convection flow of water-Al_2O_3 nanofluid in a concentric annulus with constant heat flux on the walls is investigated numerically. In order to determine entropy generation of fully developed flow, two approaches are employed and it is shown that only one of these methods can provide appropriate results for flow inside annuli. The effects of concentration of nanoparticles, Reynolds number and thermal boundaries on heat transfer enhancement and entropy generation of developing laminar flow inside annuli with different radius ratios and same cross sectional areas are studied. The results show that radius ratio is a very important decision parameter of an annular heat exchanger such that in each Re, there is an optimum radius ratio to maximize Nu and minimize entropy generation. Moreover, the effect of nanoparticles concentration on heat transfer enhancement and minimizing entropy generation is stronger at higher Reynolds.展开更多
To generate a test set for a given circuit (including both combinational and sequential circuits), choice of an algorithm within a number of existing test generation algorithms to apply is bound to vary from circuit t...To generate a test set for a given circuit (including both combinational and sequential circuits), choice of an algorithm within a number of existing test generation algorithms to apply is bound to vary from circuit to circuit. In this paper, the genetic algorithms are used to construct the models of existing test generation algorithms in making such choice more easily. Therefore, we may forecast the testability parameters of a circuit before using the real test generation algorithm. The results also can be used to evaluate the efficiency of the existing test generation algorithms. Experimental results are given to convince the readers of the truth and the usefulness of this approach.展开更多
Organic Rankine cycle(ORC)is widely used for the low grade geothermal power generation.However,a large amount of irreversible loss results in poor technical and economic performance due to its poor matching between th...Organic Rankine cycle(ORC)is widely used for the low grade geothermal power generation.However,a large amount of irreversible loss results in poor technical and economic performance due to its poor matching between the heat source/sink and the working medium in the condenser and the evaporator.The condensing temperature,cooling water temperature difference and pinch point temperature difference are often fixed according to engineering experience.In order to optimize the ORC system comprehensively,the coupling effect of evaporation and condensation process was proposed in this paper.Based on the laws of thermodynamics,the energy analysis,exergy analysis and entropy analysis were adopted to investigate the ORC performance including net output power,thermal efficiency,exergy efficiency,thermal conductivity,irreversible loss,etc.,using geothermal water at a temperature of 120℃as the heat source and isobutane as the working fluid.The results show that there exists a pair of optimal evaporating temperature and condensing temperatures to maximize the system performance.The net power output and the system comprehensive performance achieve their highest values at the same evaporating temperature,but the system comprehensive performance corresponds to a lower condensing temperature than the net power output.展开更多
From the outcrops in the Yaomoshan and Hongyanchi sections, oil shales, deep dark mudstones or black mudstones with better organic richness were found. Through the analysis of the samples in the organic petrology meth...From the outcrops in the Yaomoshan and Hongyanchi sections, oil shales, deep dark mudstones or black mudstones with better organic richness were found. Through the analysis of the samples in the organic petrology method, the microscope features of the sedimentary organic matter were studied. The results indicate that three types of kerogens present in the measured samples. Kerogen type I consists of the laminate algainite, abundant sporinite and only little content of cutinite, which can mainly generate oil. The generation hydrocarbon components of the type II kerogen are dominated by the sporinite, cutinite and little the exinite debris. The type III kerogen is comprised of the sporinite and debris of the exinite with some components of gas generation. Through the analysis of the experiments, the organic kerogen of the Lucaogou formation is mostly comprised of the type I, partially type II, and particularly type III. In Hongyanchi formation, the organic type is mixed by the types II and III. The plot of the ($1+$2) or TOC value and the content of exinite show two trends. From the evolution of burial and the Permian source rocks in Changji Depression, the Permian formation source rock has ended the generation of hydrocarbon. A significant difference in constituents of the organic macerals among three kerogens in these samples leads to the distinction of the potential hydrocarbon generation. The Lucaogou formation for kerogen type I has better potential hydrocarbon generation. It can reach the oil peak with Ro ratio Of 0.9%. For the kerogen II, the oil peak of the source rocks comes late with the Ro ratio of 1.0% with less quantity of the generation hydrocarbon than the kerogen I. For type III, it can mainly generate gas and reach the gas peak with the Ro ratio of 1.3%. In a word, the Lucaogou formation and Hongyanchi formation source rocks with high organic richness in Permian source rocks have well exploration prospects.展开更多
Background:The utilization of heterosis has greatly improved the productivity of cotton worldwide.However,a major constraint for the large-scale promotion of F_(1) hybrid cotton is artificial emasculation and pollinat...Background:The utilization of heterosis has greatly improved the productivity of cotton worldwide.However,a major constraint for the large-scale promotion of F_(1) hybrid cotton is artificial emasculation and pollination.This study proposed the potential utilization of F_(2) hybrids to improve upland cotton production through a comparative evaluation of hybrid generations.Results:Eight upland cotton varieties were analyzed and crosses were made according to NCII incomplete diallel cross-breeding design in two cotton belts of China.Variance analysis revealed significant differences in agronomic,yield,and fiber quality in both generations and environments.The broad-sense heritability of agronomic and yield traits was relatively higher than quality traits.Furthermore,the narrow-sense heritability of some traits was higher in F_(2) than in the F_(1) generation in both cotton belts.Overall,parental lines Zhong901,ZB,L28,and Z98 were observed with maximum combining ability while combinations with strong special combining ability were ZB×DT,L28×Z98,and ZB×851.The yield traits heterosis was predominant in both generations.However,the level of heterosis was altered with trait,hybrid combination,generation,and environment.Interestingly,L28×Z98 performed outstandingly in Anyang.Its lint yield(LY)was 24.2%higher in F_(1) and 11.6%in F_(2) than that of the control Ruiza 816.The performance of SJ48×Z98 was excellent in Aral which showed 36.5%higher LY in F_(2)and 10.9%in F_(2)than control CCRI 49.Further results revealed most hybrid combinations had shown a low level of heterosis for agronomic and fiber quality traits in both generations.Comparatively,ZB×DT and L28×Z98 showed hybrid vigor for multiple traits in both generations and cotton belts.It is feasible to screen strong heterosis hybrid combinations with fine fiber in early generations.In the two environments,the correlation of some traits showed the same trend,and the correlation degree of Anyang site was higher than that of Aral site,and the correlation of some traits showed the opposite trend.According to the performance of strong heterosis hybrid combinations in different environments,the plant type,yield and fiber traits associated with them can be improved according to the correlation.Conclusions:Through comparative analysis of variance,combining ability,and heterosis in F_(2)and F_(2)hybrids in different cotton belts,this study proposed the potential utilization of F_(2)hybrids to improve upland cotton productivity in China.展开更多
In order to forecast promising technologies in the field of next generation mobile communication, various patent indicators were analyzed such as citation per patent, patent family information, patent share, increase ...In order to forecast promising technologies in the field of next generation mobile communication, various patent indicators were analyzed such as citation per patent, patent family information, patent share, increase rate, and patent activity. These indicators were quantified into several indexes and then integrated into an evaluation score to provide promising technologies. As a result of the suggested patent analysis, four technologies out of twenty two in details classification were selected, which showed outstanding technology competitiveness, high patent share and increasing rates as well as high recent-patent-ratios and triad-patent-family-ratios. Each of the selected technologies scored more than 10 points in total, and the following four technologies were suggested as promising ones in the field of next generation mobile communication: 1) 3GPP based mobile communication, 2) beyond 4G mobile communication, 3) IEEE 802.16 based mobile communication, which are in medium classification of broadband mobile communication system, and 4) testing/certification system of mobile communication, which is in medium classification of mobile communication testing/certification system.展开更多
To preserve the sharp features and details of the synthetic aperture radar (SAR) image effectively when despeckling, a despeckling algorithm with edge detection in nonsubsampled second generation bandelet transform ...To preserve the sharp features and details of the synthetic aperture radar (SAR) image effectively when despeckling, a despeckling algorithm with edge detection in nonsubsampled second generation bandelet transform (NSBT) domain is proposed. First, the Canny operator is utilized to detect and remove edges from the SAR image. Then the NSBT which has an optimal approximation to the edges of images and a hard thresholding rule are used to approximate the details while despeckling the edge-removed image. Finally, the removed edges are added to the reconstructed image. As the edges axe detected and protected, and the NSBT is used, the proposed algorithm reaches the state-of-the-art effect which realizes both despeckling and preserving edges and details simultaneously. Experimental results show that both the subjective visual effect and the mainly objective performance indexes of the proposed algorithm outperform that of both Bayesian wavelet shrinkage with edge detection and Bayesian least square-Gaussian scale mixture (BLS-GSM).展开更多
A simple and highly accurate semi-analytical method, called the differential transformation method(DTM), was used for solving the nonlinear temperature distribution equation in solid and porous longitudinal fin with t...A simple and highly accurate semi-analytical method, called the differential transformation method(DTM), was used for solving the nonlinear temperature distribution equation in solid and porous longitudinal fin with temperature dependent internal heat generation. The problem was solved for two main cases. In the first case, heat generation was assumed variable by fin temperature for a solid fin and in second heat generation varied with temperature for a porous fin. Results are presented for the temperature distribution for a range of values of parameters appearing in the mathematical formulation(e.g. N, εG, and G). Results reveal that DTM is very effective and convenient. Also, it is found that this method can achieve more suitable results in comparison to numerical methods.展开更多
The heat generation behaviors of fatigue crack are deeply investigated under different preload forces combing numerical simulation and experiment.Firstly,a multi-contact simulation model is applied to stimulate the cr...The heat generation behaviors of fatigue crack are deeply investigated under different preload forces combing numerical simulation and experiment.Firstly,a multi-contact simulation model is applied to stimulate the crack surfaces contact and the horn-sample contact under ultrasonic excitation for calculating the temperature fields.Then,the ultrasonic infrared thermography testing and the microscope testing are carried out for the heat generation and the plastic deformation behaviors of crack region under different preload forces.On this basis,an indirect observation method based on dots distribution is proposed to estimate the plastic deformation on crack contact surfaces.The obtained results show that the temperature rise of crack region increases with the increase of preload force when the preload force is less than 250 N,while the temperature rise rapidly declines due to the plastic deformation on crack contact surfaces and the inhibition effect when the preload force is 280 N.Moreover,the plastic deformation does not lead to the crack propagation,but reduces the detection repeatability of fatigue crack.This work provides an effective method for optimizing testing conditions in practical testing processes,which will be helpful to the establishment of testing standards for batches of test objects in ultrasonic infrared thermography testing.展开更多
By analyzing some existing test data generation methods, a new automated test data generation approach was presented. The linear predicate functions on a given path was directly used to construct a linear constrain sy...By analyzing some existing test data generation methods, a new automated test data generation approach was presented. The linear predicate functions on a given path was directly used to construct a linear constrain system for input variables. Only when the predicate function is nonlinear, does the linear arithmetic representation need to be computed. If the entire predicate functions on the given path are linear, either the desired test data or the guarantee that the path is infeasible can be gotten from the solution of the constrain system. Otherwise, the iterative refining for the input is required to obtain the desired test data. Theoretical analysis and test results show that the approach is simple and effective, and takes less computation. The scheme can also be used to generate path-based test data for the programs with arrays and loops.展开更多
Practical techniques for smooth geodesic patterning of membrane structures were investigated.For the geodesic search,adjustment of the subplane of the extracted elements series was proposed,and various spline approxim...Practical techniques for smooth geodesic patterning of membrane structures were investigated.For the geodesic search,adjustment of the subplane of the extracted elements series was proposed,and various spline approximation methods were used to flatten the strip for the generation of a smooth pattern.This search approach is very simple,and the geodesic line could be easily attained by the proposed method without the need for a difficult computation method.Smooth cutting patterning can also be generated by spline approximation without the noise in discrete nodal information.Additionally,the geodesic cutting pattern saved about 21%of the required area for the catenary model due to the reduction of the curvature of the planar pattern seam line.展开更多
文摘To investigate the overall performance of reverse energy bypass scramjet,firstly a variable spe⁃cific heat method combined with a chemical balance calculation module for combustion products were used to es⁃tablish a benchmark scramjet performance evaluation model.Based on the test data of typical flying point of Mach 7 with the altitude of 29 km,the reliability of the model was verified.The deviations of parameters such as the to⁃tal pressure loss of combustor between the model and the test data were analyzed.Furtherly,an analytical method for post-combustion magnetohydrodynamic power generation was established;by embedding the above method into the overall performance evaluation model,performance prediction considering the power generation effect was realized.Finally,based on the above model,variety regulations of the inlet and the outlet parameters of the power generation channel and performance parameters including the engine specific impulse and the unit thrust under different enthalpy extraction ratios and load factors were analyzed.It could be concluded that the model can reliably predict the variations of key parameters.As the value of the load factor increases,the value of the conduc⁃tivity required to reach the specified enthalpy extraction ratio first decreases and then increases,which is approxi⁃mately parabolic.In order to reduce the demand for the gas conductivity for MHD power generation,the load fac⁃tor should be around 0.5.When the load factor is 0.4 and the magnetic induction intensity is 2.5 T,if the enthalpy extraction ratio reaches 0.5%,the engine specific impulse performance reduces about 3.58%.
基金Supported by the Key Research Program of the Chinese Academy of Sciences(ZDRE-KT-2021-3)。
文摘Both analyzing a large amount of space weather observed data and alleviating personal experience bias are significant challenges in generating artificial space weather forecast products.With the use of natural language generation methods based on the sequence-to-sequence model,space weather forecast texts can be automatically generated.To conduct our generation tasks at a fine-grained level,a taxonomy of space weather phenomena based on descriptions is presented.Then,our MDH(Multi-Domain Hybrid)model is proposed for generating space weather summaries in two stages.This model is composed of three sequence-to-sequence-based deep neural network sub-models(one Bidirectional Auto-Regressive Transformers pre-trained model and two Transformer models).Then,to evaluate how well MDH performs,quality evaluation metrics based on two prevalent automatic metrics and our innovative human metric are presented.The comprehensive scores of the three summaries generating tasks on testing datasets are 70.87,93.50,and 92.69,respectively.The results suggest that MDH can generate space weather summaries with high accuracy and coherence,as well as suitable length,which can assist forecasters in generating high-quality space weather forecast products,despite the data being starved.
文摘The reverse magnetohydrodynamic(MHD)energy bypass technology is a promising energy redis⁃tribution technology in the scramjet system,in augmented with a power generation equipment to supply the neces⁃sary long-distance flight airframe power.In this paper,a computational model of the scramjet magnetohydrody⁃namic channel is developed and verified by using the commercial software Fluent.It is found that when the mag⁃netic induction intensity is 1,2,3,4 T,the power generation efficiency is 22.5%,22.3%,22.0%,21.5%,and decreases with the increase of the magnetic induction intensity,and the enthalpy extraction rate is 0.026%,0.1%,0.21%,0.34%,and increases with the increase of the magnetic induction intensity.The deceleration ef⁃fect of electromagnetic action on the airflow in the power channel increases with the increase of magnetic induc⁃tion intensity.The stronger the magnetic field intensity,the more obvious the decreasing effect of fluid Mach num⁃ber in the channel.The power generation efficiency decreases as the magnetic induction intensity increases and the enthalpy extraction rate is reversed.As the local currents gathering at inlet and outlet of the power generation area,total temperature and enthalpy along the flow direction do not vary linearly,and there are maximum and minimum values at inlet and outlet.Increasing the number of electrodes can effectively regulate the percentage of Joule heat dissipation,which can improve the power generation efficiency.
基金supported in part by the National Natural Science Foundation of China(Grant No.62276274)Shaanxi Natural Science Foundation(Grant No.2023-JC-YB-528)Chinese aeronautical establishment(Grant No.201851U8012)。
文摘The automatic stealth task of military time-sensitive targets plays a crucial role in maintaining national military security and mastering battlefield dynamics in military applications.We propose a novel Military Time-sensitive Targets Stealth Network via Real-time Mask Generation(MTTSNet).According to our knowledge,this is the first technology to automatically remove military targets in real-time from videos.The critical steps of MTTSNet are as follows:First,we designed a real-time mask generation network based on the encoder-decoder framework,combined with the domain expansion structure,to effectively extract mask images.Specifically,the ASPP structure in the encoder could achieve advanced semantic feature fusion.The decoder stacked high-dimensional information with low-dimensional information to obtain an effective mask layer.Subsequently,the domain expansion module guided the adaptive expansion of mask images.Second,a context adversarial generation network based on gated convolution was constructed to achieve background restoration of mask positions in the original image.In addition,our method worked in an end-to-end manner.A particular semantic segmentation dataset for military time-sensitive targets has been constructed,called the Military Time-sensitive Target Masking Dataset(MTMD).The MTMD dataset experiment successfully demonstrated that this method could create a mask that completely occludes the target and that the target could be hidden in real time using this mask.We demonstrated the concealment performance of our proposed method by comparing it to a number of well-known and highly optimized baselines.
基金Project(51876224)supported by the National Natural Science Foundation of ChinaProject(2020CX008)supported by the Innovation-Driven Project of Central South University,China。
文摘Methanol is regarded as an important liquid fuel for hydrogen storage, transportation, and in-situ generation due to its convenient conveyance, high energy density, and low conversion temperature. In this work, an overview of state-of-the-art investigations on methanol reforming is critically summarized, including the detailed introduction of methanol conversion pathways from the perspective of fuel cell applications, various advanced materials design for catalytic methanol conversion, as well as the development of steam methanol reformers. For the section of utilization pathways, reactions such as steam reforming of methanol, partial oxidation of methanol, oxidative steam reforming of methanol, and sorption-enhanced steam methanol reforming were elaborated;For the catalyst section, the strategies to enhance the catalytic activity and other comprehensive performances were summarized;For the reactor section, the newly designed steam methanol reformers were thoroughly described. This review will benefit researchers from both fundamental research and fuel cell applications in the field of catalyzing methanol to hydrogen.
文摘Grey sequence generation can draw out and develop implied rules of the original data. Different kinds of generation methods were summarized and classified into two types: partial generation and whole generation. The average generation and stepwise ratio generation is disussed , the preference generation is regard as a special case of proportional division based on analysis geometric theory, propose an idea of using concave and convex status of discrete data to determine the generation coefficient. Based on the stepwise and smooth ratio generation, a tendency average generation is proposed and have a comparison using the data provided in papers listed in the references. The comparison proves that the new generation is better than the other two generations and errors are obviously reduced.
基金Project(51378457)supported by the National Natural Science Foundation of China
文摘An essential step for the realization of free-form surface structures is to create an efficient structural gird that satisfies not only the architectural aesthetics,but also the structural performance.Employing the main stress trajectories as the representation of force flows on a free-form surface,an automatic grid generation approach is proposed for the architectural design.The algorithm automatically plots the main stress trajectories on a 3D free-form surface,and adopts a modified advancing front meshing technique to generate the structural grid.Based on the proposed algorithm,an automatic grid generator named "St-Surmesh" is developed for the practical architectural design of free-form surface structure.The surface geometry of one of the Sun Valleys in Expo Axis for the Expo Shanghai 2010 is selected as a numerical example for validating the proposed approach.Comparative studies are performed to demonstrate how different structural grids affect the design of a free-form surface structure.
基金supported by the National Natural Science Foundation of China(6150340861573374)
文摘The hypersonic interception in near space is a great challenge because of the target’s unpredictable trajectory, which demands the interceptors of trajectory cluster coverage of the predicted area and optimal trajectory modification capability aiming at the consistently updating predicted impact point(PIP) in the midcourse phase. A novel midcourse optimal trajectory cluster generation and trajectory modification algorithm is proposed based on the neighboring optimal control theory. Firstly, the midcourse trajectory optimization problem is introduced; the necessary conditions for the optimal control and the transversality constraints are given.Secondly, with the description of the neighboring optimal trajectory existence theory(NOTET), the neighboring optimal control(NOC)algorithm is derived by taking the second order partial derivations with the necessary conditions and transversality conditions. The revised terminal constraints are reversely integrated to the initial time and the perturbations of the co-states are further expressed with the states deviations and terminal constraints modifications.Thirdly, the simulations of two different scenarios are carried out and the results prove the effectiveness and optimality of the proposed method.
基金supported by the National Natural Science Foundation of China(61873278)。
文摘The cooperative interception trajectories generation of multiple interceptors to hypersonic targets is studied.First,to solve the problem of on-line trajectory generation of the single interceptor,a generation method based on neighborhood optimal control is adopted.Then,when intercepting the strong maneuvering targets,the single interceptor is insufficient in maneuverability,therefore,an on-line multiple trajectories generation algorithm is proposed,which uses the multiple interceptors intercept area(IIA)to cover the target's predicted intercept area(PIA)cooperatively.Through optimizing the interceptors'zero control terminal location,the trajectories are generated on-line by using the neighborhood optimal control method,these trajectories could make the IIA maximally cover the PIA.The simulation results show that the proposed method can greatly improve the interception probability,which provides a reference for the collaborative interception of multiple interceptors.
文摘Heat transfer and entropy generation of developing laminar forced convection flow of water-Al_2O_3 nanofluid in a concentric annulus with constant heat flux on the walls is investigated numerically. In order to determine entropy generation of fully developed flow, two approaches are employed and it is shown that only one of these methods can provide appropriate results for flow inside annuli. The effects of concentration of nanoparticles, Reynolds number and thermal boundaries on heat transfer enhancement and entropy generation of developing laminar flow inside annuli with different radius ratios and same cross sectional areas are studied. The results show that radius ratio is a very important decision parameter of an annular heat exchanger such that in each Re, there is an optimum radius ratio to maximize Nu and minimize entropy generation. Moreover, the effect of nanoparticles concentration on heat transfer enhancement and minimizing entropy generation is stronger at higher Reynolds.
基金This work was supported by National Natural Science Foundation of China (NSFC) under the grant !No. 69873030
文摘To generate a test set for a given circuit (including both combinational and sequential circuits), choice of an algorithm within a number of existing test generation algorithms to apply is bound to vary from circuit to circuit. In this paper, the genetic algorithms are used to construct the models of existing test generation algorithms in making such choice more easily. Therefore, we may forecast the testability parameters of a circuit before using the real test generation algorithm. The results also can be used to evaluate the efficiency of the existing test generation algorithms. Experimental results are given to convince the readers of the truth and the usefulness of this approach.
基金Project(2018YFB1501805)supported by the National Key Research and Development Program of ChinaProject(51406130)supported by the National Natural Science Foundation of ChinaProject(201604-504)supported by the Key Laboratory of Efficient Utilization of Low and Medium Grade Energy(Tianjin University),China
文摘Organic Rankine cycle(ORC)is widely used for the low grade geothermal power generation.However,a large amount of irreversible loss results in poor technical and economic performance due to its poor matching between the heat source/sink and the working medium in the condenser and the evaporator.The condensing temperature,cooling water temperature difference and pinch point temperature difference are often fixed according to engineering experience.In order to optimize the ORC system comprehensively,the coupling effect of evaporation and condensation process was proposed in this paper.Based on the laws of thermodynamics,the energy analysis,exergy analysis and entropy analysis were adopted to investigate the ORC performance including net output power,thermal efficiency,exergy efficiency,thermal conductivity,irreversible loss,etc.,using geothermal water at a temperature of 120℃as the heat source and isobutane as the working fluid.The results show that there exists a pair of optimal evaporating temperature and condensing temperatures to maximize the system performance.The net power output and the system comprehensive performance achieve their highest values at the same evaporating temperature,but the system comprehensive performance corresponds to a lower condensing temperature than the net power output.
基金Project(2011ZX05002-006)supported by the National Science and Technology Project,China
文摘From the outcrops in the Yaomoshan and Hongyanchi sections, oil shales, deep dark mudstones or black mudstones with better organic richness were found. Through the analysis of the samples in the organic petrology method, the microscope features of the sedimentary organic matter were studied. The results indicate that three types of kerogens present in the measured samples. Kerogen type I consists of the laminate algainite, abundant sporinite and only little content of cutinite, which can mainly generate oil. The generation hydrocarbon components of the type II kerogen are dominated by the sporinite, cutinite and little the exinite debris. The type III kerogen is comprised of the sporinite and debris of the exinite with some components of gas generation. Through the analysis of the experiments, the organic kerogen of the Lucaogou formation is mostly comprised of the type I, partially type II, and particularly type III. In Hongyanchi formation, the organic type is mixed by the types II and III. The plot of the ($1+$2) or TOC value and the content of exinite show two trends. From the evolution of burial and the Permian source rocks in Changji Depression, the Permian formation source rock has ended the generation of hydrocarbon. A significant difference in constituents of the organic macerals among three kerogens in these samples leads to the distinction of the potential hydrocarbon generation. The Lucaogou formation for kerogen type I has better potential hydrocarbon generation. It can reach the oil peak with Ro ratio Of 0.9%. For the kerogen II, the oil peak of the source rocks comes late with the Ro ratio of 1.0% with less quantity of the generation hydrocarbon than the kerogen I. For type III, it can mainly generate gas and reach the gas peak with the Ro ratio of 1.3%. In a word, the Lucaogou formation and Hongyanchi formation source rocks with high organic richness in Permian source rocks have well exploration prospects.
基金sponsored by funds from the Zhongyuan Academician Foundation (212101510001)the Fundamental Research Funds for State Key Laboratory of Cotton Biology (CB2021C08)the General Program of the National Natural Science Foundation of China (31871679)
文摘Background:The utilization of heterosis has greatly improved the productivity of cotton worldwide.However,a major constraint for the large-scale promotion of F_(1) hybrid cotton is artificial emasculation and pollination.This study proposed the potential utilization of F_(2) hybrids to improve upland cotton production through a comparative evaluation of hybrid generations.Results:Eight upland cotton varieties were analyzed and crosses were made according to NCII incomplete diallel cross-breeding design in two cotton belts of China.Variance analysis revealed significant differences in agronomic,yield,and fiber quality in both generations and environments.The broad-sense heritability of agronomic and yield traits was relatively higher than quality traits.Furthermore,the narrow-sense heritability of some traits was higher in F_(2) than in the F_(1) generation in both cotton belts.Overall,parental lines Zhong901,ZB,L28,and Z98 were observed with maximum combining ability while combinations with strong special combining ability were ZB×DT,L28×Z98,and ZB×851.The yield traits heterosis was predominant in both generations.However,the level of heterosis was altered with trait,hybrid combination,generation,and environment.Interestingly,L28×Z98 performed outstandingly in Anyang.Its lint yield(LY)was 24.2%higher in F_(1) and 11.6%in F_(2) than that of the control Ruiza 816.The performance of SJ48×Z98 was excellent in Aral which showed 36.5%higher LY in F_(2)and 10.9%in F_(2)than control CCRI 49.Further results revealed most hybrid combinations had shown a low level of heterosis for agronomic and fiber quality traits in both generations.Comparatively,ZB×DT and L28×Z98 showed hybrid vigor for multiple traits in both generations and cotton belts.It is feasible to screen strong heterosis hybrid combinations with fine fiber in early generations.In the two environments,the correlation of some traits showed the same trend,and the correlation degree of Anyang site was higher than that of Aral site,and the correlation of some traits showed the opposite trend.According to the performance of strong heterosis hybrid combinations in different environments,the plant type,yield and fiber traits associated with them can be improved according to the correlation.Conclusions:Through comparative analysis of variance,combining ability,and heterosis in F_(2)and F_(2)hybrids in different cotton belts,this study proposed the potential utilization of F_(2)hybrids to improve upland cotton productivity in China.
文摘In order to forecast promising technologies in the field of next generation mobile communication, various patent indicators were analyzed such as citation per patent, patent family information, patent share, increase rate, and patent activity. These indicators were quantified into several indexes and then integrated into an evaluation score to provide promising technologies. As a result of the suggested patent analysis, four technologies out of twenty two in details classification were selected, which showed outstanding technology competitiveness, high patent share and increasing rates as well as high recent-patent-ratios and triad-patent-family-ratios. Each of the selected technologies scored more than 10 points in total, and the following four technologies were suggested as promising ones in the field of next generation mobile communication: 1) 3GPP based mobile communication, 2) beyond 4G mobile communication, 3) IEEE 802.16 based mobile communication, which are in medium classification of broadband mobile communication system, and 4) testing/certification system of mobile communication, which is in medium classification of mobile communication testing/certification system.
基金supported by the National Natural Science Foundation of China(6067309760702062)+3 种基金the National HighTechnology Research and Development Program of China(863 Program)(2008AA01Z1252007AA12Z136)the National ResearchFoundation for the Doctoral Program of Higher Education of China(20060701007)the Program for Cheung Kong Scholarsand Innovative Research Team in University(IRT 0645).
文摘To preserve the sharp features and details of the synthetic aperture radar (SAR) image effectively when despeckling, a despeckling algorithm with edge detection in nonsubsampled second generation bandelet transform (NSBT) domain is proposed. First, the Canny operator is utilized to detect and remove edges from the SAR image. Then the NSBT which has an optimal approximation to the edges of images and a hard thresholding rule are used to approximate the details while despeckling the edge-removed image. Finally, the removed edges are added to the reconstructed image. As the edges axe detected and protected, and the NSBT is used, the proposed algorithm reaches the state-of-the-art effect which realizes both despeckling and preserving edges and details simultaneously. Experimental results show that both the subjective visual effect and the mainly objective performance indexes of the proposed algorithm outperform that of both Bayesian wavelet shrinkage with edge detection and Bayesian least square-Gaussian scale mixture (BLS-GSM).
文摘A simple and highly accurate semi-analytical method, called the differential transformation method(DTM), was used for solving the nonlinear temperature distribution equation in solid and porous longitudinal fin with temperature dependent internal heat generation. The problem was solved for two main cases. In the first case, heat generation was assumed variable by fin temperature for a solid fin and in second heat generation varied with temperature for a porous fin. Results are presented for the temperature distribution for a range of values of parameters appearing in the mathematical formulation(e.g. N, εG, and G). Results reveal that DTM is very effective and convenient. Also, it is found that this method can achieve more suitable results in comparison to numerical methods.
基金Project(2019M650262)supported by the China Postdoctoral Science FoundationProject(92060106)supported by the Major Research Plan of National Natural Science Foundation of ChinaProject(201803U8003)supported by the China Aeronautical Science Foundation。
文摘The heat generation behaviors of fatigue crack are deeply investigated under different preload forces combing numerical simulation and experiment.Firstly,a multi-contact simulation model is applied to stimulate the crack surfaces contact and the horn-sample contact under ultrasonic excitation for calculating the temperature fields.Then,the ultrasonic infrared thermography testing and the microscope testing are carried out for the heat generation and the plastic deformation behaviors of crack region under different preload forces.On this basis,an indirect observation method based on dots distribution is proposed to estimate the plastic deformation on crack contact surfaces.The obtained results show that the temperature rise of crack region increases with the increase of preload force when the preload force is less than 250 N,while the temperature rise rapidly declines due to the plastic deformation on crack contact surfaces and the inhibition effect when the preload force is 280 N.Moreover,the plastic deformation does not lead to the crack propagation,but reduces the detection repeatability of fatigue crack.This work provides an effective method for optimizing testing conditions in practical testing processes,which will be helpful to the establishment of testing standards for batches of test objects in ultrasonic infrared thermography testing.
文摘By analyzing some existing test data generation methods, a new automated test data generation approach was presented. The linear predicate functions on a given path was directly used to construct a linear constrain system for input variables. Only when the predicate function is nonlinear, does the linear arithmetic representation need to be computed. If the entire predicate functions on the given path are linear, either the desired test data or the guarantee that the path is infeasible can be gotten from the solution of the constrain system. Otherwise, the iterative refining for the input is required to obtain the desired test data. Theoretical analysis and test results show that the approach is simple and effective, and takes less computation. The scheme can also be used to generate path-based test data for the programs with arrays and loops.
基金Project(12 High-tech Urban C22)supported by High-tech Urban Development Program,Ministry of Land,Transport and Moritime Affairs of Korea
文摘Practical techniques for smooth geodesic patterning of membrane structures were investigated.For the geodesic search,adjustment of the subplane of the extracted elements series was proposed,and various spline approximation methods were used to flatten the strip for the generation of a smooth pattern.This search approach is very simple,and the geodesic line could be easily attained by the proposed method without the need for a difficult computation method.Smooth cutting patterning can also be generated by spline approximation without the noise in discrete nodal information.Additionally,the geodesic cutting pattern saved about 21%of the required area for the catenary model due to the reduction of the curvature of the planar pattern seam line.