The longitudinal dispersion of the projectile in shooting tests of two-dimensional trajectory corrections fused with fixed canards is extremely large that it sometimes exceeds the correction ability of the correction ...The longitudinal dispersion of the projectile in shooting tests of two-dimensional trajectory corrections fused with fixed canards is extremely large that it sometimes exceeds the correction ability of the correction fuse actuator.The impact point easily deviates from the target,and thus the correction result cannot be readily evaluated.However,the cost of shooting tests is considerably high to conduct many tests for data collection.To address this issue,this study proposes an aiming method for shooting tests based on small sample size.The proposed method uses the Bootstrap method to expand the test data;repeatedly iterates and corrects the position of the simulated theoretical impact points through an improved compatibility test method;and dynamically adjusts the weight of the prior distribution of simulation results based on Kullback-Leibler divergence,which to some extent avoids the real data being"submerged"by the simulation data and achieves the fusion Bayesian estimation of the dispersion center.The experimental results show that when the simulation accuracy is sufficiently high,the proposed method yields a smaller mean-square deviation in estimating the dispersion center and higher shooting accuracy than those of the three comparison methods,which is more conducive to reflecting the effect of the control algorithm and facilitating test personnel to iterate their proposed structures and algorithms.;in addition,this study provides a knowledge base for further comprehensive studies in the future.展开更多
This paper explores the performances of a finite element simulation including four concrete models applied to a full-scale reinforced concrete beam subjected to blast loading. Field test data has been used to compare ...This paper explores the performances of a finite element simulation including four concrete models applied to a full-scale reinforced concrete beam subjected to blast loading. Field test data has been used to compare model results for each case. The numerical modelling has been, carried out using the suitable code LS-DYNA. This code integrates blast load routine(CONWEP) for the explosive description and four different material models for the concrete including: Karagozian & Case Concrete, Winfrith, Continuous Surface Cap Model and Riedel-Hiermaier-Thoma models, with concrete meshing based on 10, 15, and 20 mm. Six full-scale beams were tested: four of them used for the initial calibration of the numerical model and two more tests at lower scaled distances. For calibration, field data obtained employing pressure and accelerometers transducers were compared with the results derived from the numerical simulation. Damage surfaces and the shape of rupture in the beams have been used as references for comparison. Influence of the meshing on accelerations has been put in evidence and for some models the shape and size of the damage in the beams produced maximum differences around 15%. In all cases, the variations between material and mesh models are shown and discussed.展开更多
The redistribution of three-dimensional(3D)geostress during underground tunnel excavation can easily induce to shear failure along rockmass structural plane,potentially resulting in engineering disasters.However,the c...The redistribution of three-dimensional(3D)geostress during underground tunnel excavation can easily induce to shear failure along rockmass structural plane,potentially resulting in engineering disasters.However,the current understanding of rockmass shear behavior is mainly based on shear tests under2D stress without lateral stress,the shear fracture under 3D stress is unclear,and the relevant 3D shear fracture theory research is deficient.Therefore,this study conducted true triaxial cyclic loading and unloading shear tests on intact and bedded limestone under different normal stress σ_(n) and lateral stressσ_(p)to investigate the shear strength,deformation,and failure characteristics.The results indicate that under differentσ_(n)and σ_(p),the stress–strain hysteresis loop area gradually increases from nearly zero in the pre-peak stage,becomes most significant in the post-peak stage,and then becomes very small in the residual stage as the number of shear test cycles increases.The shear peak strength and failure surface roughness almost linearly increase with the increase inσ_(n),while they first increase and then gradually decrease asσ_(p)increases,with the maximum increases of 12.9%for strength and 15.1%for roughness.The shear residual strength almost linearly increases withσ_(n),but shows no significant change withσ_(p).Based on the acoustic emission characteristic parameters during the test process,the shear fracture process and microscopic failure mechanism were analyzed.As the shear stressτincreases,the acoustic emission activity,main frequency,and amplitude gradually increase,showing a significant rise during the cycle near the peak strength,while remaining almost unchanged in the residual stage.The true triaxial shear fracture process presents tensile-shear mixture failure characteristics dominated by microscopic tensile failure.Based on the test results,a 3D shear strength criterion considering the lateral stress effect was proposed,and the determination methods and evolution of the shear modulus G,cohesion c_(jp),friction angleφ_(jp),and dilation angleψjpduring rockmass shear fracture process were studied.Under differentσ_(n)andσ_(p),G first rapidly decreases and then tends to stabilize;cjp,φ_(jp),andψjpfirst increase rapidly to the maximum value,then decrease slowly,and finally remain basically unchanged.A 3D shear mechanics model considering the effects of lateral stress and shear parameter degradation was further established,and a corresponding numerical calculation program was developed based on3D discrete element software.The proposed model effectively simulates the shear failure evolution process of rockmass under true triaxial shear test,and is further applied to successfully reveal the failure characteristics of surrounding rocks with structural planes under different combinations of tunnel axis and geostress direction.展开更多
Aviation turbine engine oils require excellent thermal-oxidative stability because of their high-temperature environments.High-temperature bearing deposit testing is a mandatory method for measuring the thermal-oxidat...Aviation turbine engine oils require excellent thermal-oxidative stability because of their high-temperature environments.High-temperature bearing deposit testing is a mandatory method for measuring the thermal-oxidative performance of aviation lubricant oils,and the relevant apparatus was improved in the present study.Two different commercial aviation turbine engine oils were tested,one with standard performance(known as the SL oil)and the other with high thermal stability,and their thermal-oxidative stability characteristics were evaluated.After 100 h of high-temperature bearing testing,the SL oil was analyzed by using various analytical techniques to investigate its thermal-oxidative process in the bearing test,with its thermal-oxidative degradation mechanism also being discussed.The results indicate that the developed high-temperature bearing apparatus easily meets the test requirements of method 3410.1 in standard FED-STD-791D.The viscosity and total acid number(TAN)of the SL oil increased with the bearing test time,and various deposits were produced in the bearing test,with the micro-particles of the carbon deposits being sphere-like,rod-like,and sheet-like in appearance.The antioxidant additives in the oil were consumed very rapidly in the first 30 h of the bearing test,with N-phenyl-1-naphthylamine being consumed faster than dioctyldiphenylamine.Overall,the oil thermal-oxidative process involves very complex physical and chemical mechanisms.展开更多
Young learners’English(YLE)tests have become increasingly prevalent among and important to Chinese English learners and their parents.In China,parents are actively involved in their children’s education and test-tak...Young learners’English(YLE)tests have become increasingly prevalent among and important to Chinese English learners and their parents.In China,parents are actively involved in their children’s education and test-taking decisions,and their participation has given rise to a series of social impacts.Although parent involvement has received increasing public and academic attention in newspaper and scholarly articles,there exists no thorough analysis of current research on parents’roles in young learners’test-taking.To address this gap,we systemically analyzed Chinese newspaper articles and academic articles between 2011 and 2021 to elicit Chinese parents’roles in YLE test-taking.Our thematic analysis of the literature identifies the ways in which parents influence their children’s test-taking experiences,and how the tests affect this influence.Specifically,our results elicit 1)parents’engagement in YLE testing;2)parents’understanding of the intended uses of YLE tests;3)parents’perception and consequences of their involvement in YLE testing;and 4)parents’backgrounds.This analysis reveals the popularity of YLE tests among young learners and their parents in China and public concern over test-related issues.It also broadens our understanding of YLE testing impact and suggests future potential research directions.展开更多
Language tests are frequently used as devices to evaluate language learning and teaching; therefore,we must be concerned about the quality—reliability and validity—of our tests.Many researches have showed that the q...Language tests are frequently used as devices to evaluate language learning and teaching; therefore,we must be concerned about the quality—reliability and validity—of our tests.Many researches have showed that the quality of language tests has been decreased owing to the misuse of multiple-choice items.It is necessary to reduce the percentage of objective items in the tests,but what is more important is test writers’ professional skills which can directly affect the quality of the tests. This essay focuses on how to optimize the quality of language tests through the training for test writers. It has become quite urgent and important now,which should involve in familiarizing the writers with basic testing theories,purposes and types of testing,and main specific testing methods.展开更多
Despite numerous research investigations to understand the influences of various structural parameters,to the authors'knowledge,no research has been the effect of different angles of incidence on stab response and...Despite numerous research investigations to understand the influences of various structural parameters,to the authors'knowledge,no research has been the effect of different angles of incidence on stab response and performance of different types of protective textiles.Three distinct structures of 3D woven textiles and 2D plain weave fabric made with similar high-performance fiber and areal density were designed and manufactured to be tested.Two samples,one composed of a single and the other of 4-panel layers,from each fabric type structure,were prepared,and tested against stabbing at[0○],[22.5○],and[45○]angle of incidence.A new stabbing experimental setup that entertained testing of the specimens at various angles of incidence was engineered and utilized.The stabbing bench is also equipped with magnetic sensors and a UK Home Office Scientific Development Branch(HOSDB)/P1/B sharpness engineered knives to measure the impact velocity and exerted impact energy respectively.A silicon compound was utilized to imprint the Back Face Signature(BFS)on the backing material after every specimen test.Each silicon print was then scanned,digitized,and precisely measured to evaluate the stab response and performance of the specimen based on different performance variables,including Depth of Trauma(DOT),Depth of Penetration(DOP),and Length of Penetration(LOP).Besides,the post-impact surface failure modes of the fabrics were also measured using Image software and analyzed at the microscale level.The results show stab angle of incidence greatly influences the stab response and performance of protective textiles.The outcome of the study could provide not only valuable insights into understanding the stab response and capabilities of protective textiles under different angle of incidence,but also provide valuable information for protective textile manufacturer,armor developer and stab testing and standardizing organizations to consider the angle of incidence while developing,testing,optimizing,and using protective textiles in various applications.展开更多
Language tests are closely concerned with teaching and learning. There are various ways to test student's foreign language level in light of different aspects. This paper mainly focuses on some key points in const...Language tests are closely concerned with teaching and learning. There are various ways to test student's foreign language level in light of different aspects. This paper mainly focuses on some key points in constructing the effective tests.展开更多
The methods for designing listening comprehension tests appeared in recent years will be also reviewed.For each kind of testing method,no matter what its scale and how its importance,can influence teaching and learnin...The methods for designing listening comprehension tests appeared in recent years will be also reviewed.For each kind of testing method,no matter what its scale and how its importance,can influence teaching and learning in varied range.Therefore,to discuss how to use the principle of authenticity to improve and ensure the reliability and validity of test can create a positive effect on teaching and learning.展开更多
Speaking,as a productive skill,is a priority for many foreign-language learners.They often evaluate their success in language learning on the basis of how much they feel they have improved in their spoken language pro...Speaking,as a productive skill,is a priority for many foreign-language learners.They often evaluate their success in language learning on the basis of how much they feel they have improved in their spoken language proficiency.Consequently,testing of oral skills has hardly been neglected in college English examination.The communicative testing theory in 1970s greatly influenced language testing,especially the oral tests.This essay briefly explores the theory of communicative language testing and discusses the methods of TOEFL oral test and college English oral test and proposes ways to the latter one for further improve ment.展开更多
This article is mainly talked about CET English writing tests from the perspective of language testing.Writing tests designed to test the language proficiency,have direct and integrative characteristics.Writing requir...This article is mainly talked about CET English writing tests from the perspective of language testing.Writing tests designed to test the language proficiency,have direct and integrative characteristics.Writing requires the candidates to use language accurately,fluently and appropriately.展开更多
Automatically formed roadway(AFR)by roof cutting with bolt grouting(RCBG)is a new deep coal mining technology.By using this technology,the broken roadway roof is strengthened,and roof cutting is applied to cut off str...Automatically formed roadway(AFR)by roof cutting with bolt grouting(RCBG)is a new deep coal mining technology.By using this technology,the broken roadway roof is strengthened,and roof cutting is applied to cut off stress transfer between the roadway and gob to ensure the collapse of the overlying strata.The roadway is automatically formed owing to the broken expansion characteristics of the collapsed strata and mining pressure.Taking the Suncun Coal Mine as the engineering background,the control effect of this new technology on roadways was studied.To compare the law of stress evolution and the surrounding rock control mechanisms between AFR and traditional gob-side entry driving,a comparative study of geomechanical model tests on the above methods was carried out.The results showed that the new technology of AFR by RCBG effectively reduced the stress concentration of the roadway compared with gob-side entry driving.The side abutment pressure peak of the solid coal side was reduced by 24.3%,which showed an obvious pressure-releasing effect.Moreover,the position of the side abutment pressure peak was far from the solid coal side,making it more beneficial for roadway stability.The deformation of AFR surrounding rock was also smaller than the deformation of the gob-side entry driving by the overload test.The former was more beneficial for roadway stability than the latter under higher stress conditions.Field application tests showed that the new technology can effectively control roadway deformation.Moreover,the technology reduced roadway excavation and avoided resource waste caused by reserved coal pillars.展开更多
Self-positioning of a shearer is the key technology for mining with a man-less working face. In an underground coal mine all radio navigation; satellite positioning or celestial navigation methods have their limitatio...Self-positioning of a shearer is the key technology for mining with a man-less working face. In an underground coal mine all radio navigation; satellite positioning or celestial navigation methods have their limitations. We analyzed an inertial navi-gation system intended to guide the movement a shearer and designed a self-positioning device for the shearer. Simulation tests were also performed on the system. We analyzed the errors observed in these tests to show that the main reason for the low preci-sion of the self-positioning system is accumulated error in the inertial sensor. A Kalman filtering algorithm used in combination with the shearer motion model effectively reduces the measurement errors of the self-positioning system by compensating for gyroscopic drift. Finally, we built an error compensation model to reduce accumulated errors using continuous correction to provide self-positioning of the shearer within a certain range of accuracy.展开更多
P omegranate(Punica granatum L.)has attracted considerable attention in world markets due to its valuable nutrients and highly appreciated sensory properties.The aroma profiles of 4 varieties of pomegranate juice,incl...P omegranate(Punica granatum L.)has attracted considerable attention in world markets due to its valuable nutrients and highly appreciated sensory properties.The aroma profiles of 4 varieties of pomegranate juice,including Dahongtian(DP),Jingpitian(JP),Luyudan(LP),and Tianhonngdan(TP),were investigated via gas chromatography-mass spectrometry(GC-MS)and gas chromatography-olfactometry(GC-O)analyses.A total of 43 volatile compounds were identified by using GC-MS.Among these compounds,16 were considered as potential aroma-active compounds as detected by GC-O.These compounds belonged to the classes of terpinenes,alcohols,and aldehydes.Eleven volatile compounds were defined as the main contributors to the overall aroma of pomegranate juice due to their high odor activity values(OAVs≥1).Aroma recombination and omission tests confirmed thatβ-myrcene,1-hexanol,and(Z)-3-hexen-1-ol were the key aroma compounds,and limonene,1-octen-3-ol,linalool,and hexanal were important aroma-active compounds in DP samples.展开更多
BACKGROUND: Prognostic value of cortisol and thyroid function tests(TFTs) has previously been evaluated in medical ICUs. We aimed to evaluate prognostic efficacy of cortisol and TFTs in critically ill poisoned patient...BACKGROUND: Prognostic value of cortisol and thyroid function tests(TFTs) has previously been evaluated in medical ICUs. We aimed to evaluate prognostic efficacy of cortisol and TFTs in critically ill poisoned patients admitted to toxicology intensive care unit(ICU).METHODS: In a prospective study of consecutively enrolled subjects admitted to the toxicology ICU, lab analyses included TFTs(total T3 and T4 as well as TSH) and cortisol levels drawn between 8 am–10 am during period of the first 24 hours post-ingestion/exposure. Simplified Acute Physiology Score Ⅱ(SAPS Ⅱ) and Acute Physiology and Chronic Health Evaluation Ⅱ(APACHE Ⅱ) were recorded. All scores were compared to detect the best prognostic factor. Type of poisoning was also included.RESULTS: In 200 patients evaluated, 129 were male and mean age was 31 years. In general, SAPS Ⅱ, T4, and cortisol could prognosticate death. After regression analysis, only cortisol had such efficacy(P=0.04; OR=1.06; 95%CI=1.05–1.08; cut-off=42 μg/d L; sensitivity=70%; specificity=82%). Between aluminium phosphide(ALP)-and non ALP-poisoned patients, level of consciousness, mean arterial pressure, and cortisol level could prognosticate death in ALP poisoning(all Ps<0.001 in both uni and multivariate analyses). Median(interquartile range; IQR) GCS was 7(6, 10) and 15(8, 15) in non-ALP and ALP-poisoned patients(P<0.003). SAPS Ⅱ and APACHE Ⅱ could not prognosticate death at all.CONCLUSION: Cortisol best prognosticated outcomes for subjects admitted to the toxicology ICU. Its level is higher in ALP-poisoned patients probably due to the higher stress while they remain conscious till the final stages of toxicity and are aware of deterioration of their clinical condition or may be due to their significantly lower blood pressures.展开更多
The Shanghai High Repetition Rate XFEL and Extreme Light Facility(SHINE)project will use 6001.3 GHz fundamental power couplers,which are modified based on TTF-Ⅲ power couplers,for continuous-wave operation with input...The Shanghai High Repetition Rate XFEL and Extreme Light Facility(SHINE)project will use 6001.3 GHz fundamental power couplers,which are modified based on TTF-Ⅲ power couplers,for continuous-wave operation with input power up to approximately 7 kW.The first batch of 20 sets of 1.3 GHz coupler prototypes was fabricated from three domestic manufacturers for the SHINE project.To better characterize the radio frequency conditioning phenomena for validating the performance of power couplers,a room temperature test stand was designed,constructed,and commissioned for the SHINE 1.3 GHz power couplers.In addition,a horizontal test cryostat was built to test the 1.3 GHz superconducting cavities,fundamental power couplers,tuners,and other components as a set.The results of these tests indicate that the 1.3 GHz couplers are capable of handling up to 14 kW continuous waves.Herein,the main aspects of the radio frequency design and construction of the test stand,along with the test results of the high-power conditioning of the 1.3 GHz couplers,are described.展开更多
Based on the plane of weakness theory, a model for predicting borehole stability in fractured reservoirs under different stress states was estiblisted and the equations for solving borehole stability were developed. T...Based on the plane of weakness theory, a model for predicting borehole stability in fractured reservoirs under different stress states was estiblisted and the equations for solving borehole stability were developed. The minimum downhole pressures required to maintain borehole stability under different natural fracture occurrences were calculated by using the data from a well in the Tazhong (central Tarim) area, Tarim Basin, west China. Several conclusions were drawn for naturally fractured reservoirs with a dip angle from less than 10° to greater than 30°. Application in three wells in the Tazhong area indicates that this model is practically useful.展开更多
To understand the vortex-ring state and to develop an approach for predicting its boundary, a series of model rotor tests of vertical descent and oblique descent have been conducted on a newly-built test apparatus - t...To understand the vortex-ring state and to develop an approach for predicting its boundary, a series of model rotor tests of vertical descent and oblique descent have been conducted on a newly-built test apparatus - the Whirling Beam. The test results showed some unsteady aerodynamic behavior of the model rotor operating in the vortex-ring state. A very irregular variation of the rotortorque at low rate-of-descent was observed here for the first time. We considered it to be the start of the 'power settling' and determined the critical descent velocity according to this observation. A previous criterion for the vortex-ring state was modified to give a semi-empirical method for predicting the entire vortex-ring state boundary. The computed boundary shows a good correlation with the model test results and the flight experiences.展开更多
For a study of the movement and deformation of coal-rock mass and low protected seams below a stope,as well as for fracture developments and rules of evolution of permeability,we designed a plane strain model test sta...For a study of the movement and deformation of coal-rock mass and low protected seams below a stope,as well as for fracture developments and rules of evolution of permeability,we designed a plane strain model test stand to carry out model tests of similar materials in order to improve the effect of gas drainage from low protected seams and to measure the movement and deformation of coal-rock mass using a method of non-contact close-range photogrammetry.Our results show that 1) using paraffin melting to take the place of coal seam mining can satisfy the mining conditions of a protective seam;2) coal-rock mass under goafs has an upward movement after the protective seam has been mined,causing floor heaving;3) low protected seams become swollen and deformed,providing a good pressure-relief effect and causing the coal-rock mass under both sides of coal pillars to become deformed by compression and 4) the evolution of permeability of low protected seams follows the way of initial values→a slight decrease→a great increase→stability→final decrease.Simultaneously,the coefficient of air permeability increased at a decreasing rate with an increase in interlayer spacing.展开更多
This article presented an experimental research on washability of microcrystal graphite using float-sink tests.Chemical and X-ray analyses showed that graphite,semi-graphite,meta-anthracite,and anthracite existed toge...This article presented an experimental research on washability of microcrystal graphite using float-sink tests.Chemical and X-ray analyses showed that graphite,semi-graphite,meta-anthracite,and anthracite existed together in this microcrystal graphite sample;and the intergrowth relationship between microcrystal graphite and gangues was very complicated based on optical mineralogy research.The results of float-sink tests revealed that:for the-25+0.5 mm size fraction,about 68%(by weight)of microcrystal graphite was obtained at the density of 2.0 g/cm^3.and the float product met the standard of commercial grade W65;for the-0.5 mm size fraction,58%(by weight)of microcrystal graphite was floated at the density of 2.0 g/cm^3,which met the standard of commercial grade W70.It can be concluded that microcrystal graphite may be upgraded by dense media separation(DMS)providing a float product using as the raw materials of casting or refractories.展开更多
基金the National Natural Science Foundation of China(Grant No.61973033)Preliminary Research of Equipment(Grant No.9090102010305)for funding the experiments。
文摘The longitudinal dispersion of the projectile in shooting tests of two-dimensional trajectory corrections fused with fixed canards is extremely large that it sometimes exceeds the correction ability of the correction fuse actuator.The impact point easily deviates from the target,and thus the correction result cannot be readily evaluated.However,the cost of shooting tests is considerably high to conduct many tests for data collection.To address this issue,this study proposes an aiming method for shooting tests based on small sample size.The proposed method uses the Bootstrap method to expand the test data;repeatedly iterates and corrects the position of the simulated theoretical impact points through an improved compatibility test method;and dynamically adjusts the weight of the prior distribution of simulation results based on Kullback-Leibler divergence,which to some extent avoids the real data being"submerged"by the simulation data and achieves the fusion Bayesian estimation of the dispersion center.The experimental results show that when the simulation accuracy is sufficiently high,the proposed method yields a smaller mean-square deviation in estimating the dispersion center and higher shooting accuracy than those of the three comparison methods,which is more conducive to reflecting the effect of the control algorithm and facilitating test personnel to iterate their proposed structures and algorithms.;in addition,this study provides a knowledge base for further comprehensive studies in the future.
基金This research has been conducted under SEGTRANS project,funded by the Centre for Industrial Technological Development(CDTI,Government of Spain).
文摘This paper explores the performances of a finite element simulation including four concrete models applied to a full-scale reinforced concrete beam subjected to blast loading. Field test data has been used to compare model results for each case. The numerical modelling has been, carried out using the suitable code LS-DYNA. This code integrates blast load routine(CONWEP) for the explosive description and four different material models for the concrete including: Karagozian & Case Concrete, Winfrith, Continuous Surface Cap Model and Riedel-Hiermaier-Thoma models, with concrete meshing based on 10, 15, and 20 mm. Six full-scale beams were tested: four of them used for the initial calibration of the numerical model and two more tests at lower scaled distances. For calibration, field data obtained employing pressure and accelerometers transducers were compared with the results derived from the numerical simulation. Damage surfaces and the shape of rupture in the beams have been used as references for comparison. Influence of the meshing on accelerations has been put in evidence and for some models the shape and size of the damage in the beams produced maximum differences around 15%. In all cases, the variations between material and mesh models are shown and discussed.
基金the National Natural Science Foundation of China(Nos.52469019,52109119,and 52274145)the Chinese Postdoctoral Science Fund Project(No.2022M723408)+1 种基金the Major Project of Guangxi Science and Technology(No.AA23023016)the Technology Project of China Power Engineering Consulting Group Co.,Ltd.(No.DG2-T01-2023)。
文摘The redistribution of three-dimensional(3D)geostress during underground tunnel excavation can easily induce to shear failure along rockmass structural plane,potentially resulting in engineering disasters.However,the current understanding of rockmass shear behavior is mainly based on shear tests under2D stress without lateral stress,the shear fracture under 3D stress is unclear,and the relevant 3D shear fracture theory research is deficient.Therefore,this study conducted true triaxial cyclic loading and unloading shear tests on intact and bedded limestone under different normal stress σ_(n) and lateral stressσ_(p)to investigate the shear strength,deformation,and failure characteristics.The results indicate that under differentσ_(n)and σ_(p),the stress–strain hysteresis loop area gradually increases from nearly zero in the pre-peak stage,becomes most significant in the post-peak stage,and then becomes very small in the residual stage as the number of shear test cycles increases.The shear peak strength and failure surface roughness almost linearly increase with the increase inσ_(n),while they first increase and then gradually decrease asσ_(p)increases,with the maximum increases of 12.9%for strength and 15.1%for roughness.The shear residual strength almost linearly increases withσ_(n),but shows no significant change withσ_(p).Based on the acoustic emission characteristic parameters during the test process,the shear fracture process and microscopic failure mechanism were analyzed.As the shear stressτincreases,the acoustic emission activity,main frequency,and amplitude gradually increase,showing a significant rise during the cycle near the peak strength,while remaining almost unchanged in the residual stage.The true triaxial shear fracture process presents tensile-shear mixture failure characteristics dominated by microscopic tensile failure.Based on the test results,a 3D shear strength criterion considering the lateral stress effect was proposed,and the determination methods and evolution of the shear modulus G,cohesion c_(jp),friction angleφ_(jp),and dilation angleψjpduring rockmass shear fracture process were studied.Under differentσ_(n)andσ_(p),G first rapidly decreases and then tends to stabilize;cjp,φ_(jp),andψjpfirst increase rapidly to the maximum value,then decrease slowly,and finally remain basically unchanged.A 3D shear mechanics model considering the effects of lateral stress and shear parameter degradation was further established,and a corresponding numerical calculation program was developed based on3D discrete element software.The proposed model effectively simulates the shear failure evolution process of rockmass under true triaxial shear test,and is further applied to successfully reveal the failure characteristics of surrounding rocks with structural planes under different combinations of tunnel axis and geostress direction.
基金supported by the National Key Research and Development Program of China(2022YFB3809005)by SINOPEC(120060-6,121027,and 122042).
文摘Aviation turbine engine oils require excellent thermal-oxidative stability because of their high-temperature environments.High-temperature bearing deposit testing is a mandatory method for measuring the thermal-oxidative performance of aviation lubricant oils,and the relevant apparatus was improved in the present study.Two different commercial aviation turbine engine oils were tested,one with standard performance(known as the SL oil)and the other with high thermal stability,and their thermal-oxidative stability characteristics were evaluated.After 100 h of high-temperature bearing testing,the SL oil was analyzed by using various analytical techniques to investigate its thermal-oxidative process in the bearing test,with its thermal-oxidative degradation mechanism also being discussed.The results indicate that the developed high-temperature bearing apparatus easily meets the test requirements of method 3410.1 in standard FED-STD-791D.The viscosity and total acid number(TAN)of the SL oil increased with the bearing test time,and various deposits were produced in the bearing test,with the micro-particles of the carbon deposits being sphere-like,rod-like,and sheet-like in appearance.The antioxidant additives in the oil were consumed very rapidly in the first 30 h of the bearing test,with N-phenyl-1-naphthylamine being consumed faster than dioctyldiphenylamine.Overall,the oil thermal-oxidative process involves very complex physical and chemical mechanisms.
文摘Young learners’English(YLE)tests have become increasingly prevalent among and important to Chinese English learners and their parents.In China,parents are actively involved in their children’s education and test-taking decisions,and their participation has given rise to a series of social impacts.Although parent involvement has received increasing public and academic attention in newspaper and scholarly articles,there exists no thorough analysis of current research on parents’roles in young learners’test-taking.To address this gap,we systemically analyzed Chinese newspaper articles and academic articles between 2011 and 2021 to elicit Chinese parents’roles in YLE test-taking.Our thematic analysis of the literature identifies the ways in which parents influence their children’s test-taking experiences,and how the tests affect this influence.Specifically,our results elicit 1)parents’engagement in YLE testing;2)parents’understanding of the intended uses of YLE tests;3)parents’perception and consequences of their involvement in YLE testing;and 4)parents’backgrounds.This analysis reveals the popularity of YLE tests among young learners and their parents in China and public concern over test-related issues.It also broadens our understanding of YLE testing impact and suggests future potential research directions.
文摘Language tests are frequently used as devices to evaluate language learning and teaching; therefore,we must be concerned about the quality—reliability and validity—of our tests.Many researches have showed that the quality of language tests has been decreased owing to the misuse of multiple-choice items.It is necessary to reduce the percentage of objective items in the tests,but what is more important is test writers’ professional skills which can directly affect the quality of the tests. This essay focuses on how to optimize the quality of language tests through the training for test writers. It has become quite urgent and important now,which should involve in familiarizing the writers with basic testing theories,purposes and types of testing,and main specific testing methods.
文摘Despite numerous research investigations to understand the influences of various structural parameters,to the authors'knowledge,no research has been the effect of different angles of incidence on stab response and performance of different types of protective textiles.Three distinct structures of 3D woven textiles and 2D plain weave fabric made with similar high-performance fiber and areal density were designed and manufactured to be tested.Two samples,one composed of a single and the other of 4-panel layers,from each fabric type structure,were prepared,and tested against stabbing at[0○],[22.5○],and[45○]angle of incidence.A new stabbing experimental setup that entertained testing of the specimens at various angles of incidence was engineered and utilized.The stabbing bench is also equipped with magnetic sensors and a UK Home Office Scientific Development Branch(HOSDB)/P1/B sharpness engineered knives to measure the impact velocity and exerted impact energy respectively.A silicon compound was utilized to imprint the Back Face Signature(BFS)on the backing material after every specimen test.Each silicon print was then scanned,digitized,and precisely measured to evaluate the stab response and performance of the specimen based on different performance variables,including Depth of Trauma(DOT),Depth of Penetration(DOP),and Length of Penetration(LOP).Besides,the post-impact surface failure modes of the fabrics were also measured using Image software and analyzed at the microscale level.The results show stab angle of incidence greatly influences the stab response and performance of protective textiles.The outcome of the study could provide not only valuable insights into understanding the stab response and capabilities of protective textiles under different angle of incidence,but also provide valuable information for protective textile manufacturer,armor developer and stab testing and standardizing organizations to consider the angle of incidence while developing,testing,optimizing,and using protective textiles in various applications.
文摘Language tests are closely concerned with teaching and learning. There are various ways to test student's foreign language level in light of different aspects. This paper mainly focuses on some key points in constructing the effective tests.
文摘The methods for designing listening comprehension tests appeared in recent years will be also reviewed.For each kind of testing method,no matter what its scale and how its importance,can influence teaching and learning in varied range.Therefore,to discuss how to use the principle of authenticity to improve and ensure the reliability and validity of test can create a positive effect on teaching and learning.
文摘Speaking,as a productive skill,is a priority for many foreign-language learners.They often evaluate their success in language learning on the basis of how much they feel they have improved in their spoken language proficiency.Consequently,testing of oral skills has hardly been neglected in college English examination.The communicative testing theory in 1970s greatly influenced language testing,especially the oral tests.This essay briefly explores the theory of communicative language testing and discusses the methods of TOEFL oral test and college English oral test and proposes ways to the latter one for further improve ment.
文摘This article is mainly talked about CET English writing tests from the perspective of language testing.Writing tests designed to test the language proficiency,have direct and integrative characteristics.Writing requires the candidates to use language accurately,fluently and appropriately.
基金This work was supported by the National Natural Science Foundation of China(Nos.51874188,52074164,42077267,and 51927807)the Natural Science Foundation of Shandong Province,China(Nos.2019SDZY04 and ZR2020JQ23)the Project of Shandong Province Higher Educational Youth Innovation Science and Technology Program,China(No.2019KJG013).
文摘Automatically formed roadway(AFR)by roof cutting with bolt grouting(RCBG)is a new deep coal mining technology.By using this technology,the broken roadway roof is strengthened,and roof cutting is applied to cut off stress transfer between the roadway and gob to ensure the collapse of the overlying strata.The roadway is automatically formed owing to the broken expansion characteristics of the collapsed strata and mining pressure.Taking the Suncun Coal Mine as the engineering background,the control effect of this new technology on roadways was studied.To compare the law of stress evolution and the surrounding rock control mechanisms between AFR and traditional gob-side entry driving,a comparative study of geomechanical model tests on the above methods was carried out.The results showed that the new technology of AFR by RCBG effectively reduced the stress concentration of the roadway compared with gob-side entry driving.The side abutment pressure peak of the solid coal side was reduced by 24.3%,which showed an obvious pressure-releasing effect.Moreover,the position of the side abutment pressure peak was far from the solid coal side,making it more beneficial for roadway stability.The deformation of AFR surrounding rock was also smaller than the deformation of the gob-side entry driving by the overload test.The former was more beneficial for roadway stability than the latter under higher stress conditions.Field application tests showed that the new technology can effectively control roadway deformation.Moreover,the technology reduced roadway excavation and avoided resource waste caused by reserved coal pillars.
基金Financial support for this work, provided by the National Natural Science Foundation of China (No.50504014), is gratefully acknowledged
文摘Self-positioning of a shearer is the key technology for mining with a man-less working face. In an underground coal mine all radio navigation; satellite positioning or celestial navigation methods have their limitations. We analyzed an inertial navi-gation system intended to guide the movement a shearer and designed a self-positioning device for the shearer. Simulation tests were also performed on the system. We analyzed the errors observed in these tests to show that the main reason for the low preci-sion of the self-positioning system is accumulated error in the inertial sensor. A Kalman filtering algorithm used in combination with the shearer motion model effectively reduces the measurement errors of the self-positioning system by compensating for gyroscopic drift. Finally, we built an error compensation model to reduce accumulated errors using continuous correction to provide self-positioning of the shearer within a certain range of accuracy.
基金funded by Shaanxi Natural Science Foundation (2019JQ-665)Xi’an Agricultural Science and Technology Project (20NYYF0021)supported by the Open Project Program of Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China (SPFW2020YB12)
文摘P omegranate(Punica granatum L.)has attracted considerable attention in world markets due to its valuable nutrients and highly appreciated sensory properties.The aroma profiles of 4 varieties of pomegranate juice,including Dahongtian(DP),Jingpitian(JP),Luyudan(LP),and Tianhonngdan(TP),were investigated via gas chromatography-mass spectrometry(GC-MS)and gas chromatography-olfactometry(GC-O)analyses.A total of 43 volatile compounds were identified by using GC-MS.Among these compounds,16 were considered as potential aroma-active compounds as detected by GC-O.These compounds belonged to the classes of terpinenes,alcohols,and aldehydes.Eleven volatile compounds were defined as the main contributors to the overall aroma of pomegranate juice due to their high odor activity values(OAVs≥1).Aroma recombination and omission tests confirmed thatβ-myrcene,1-hexanol,and(Z)-3-hexen-1-ol were the key aroma compounds,and limonene,1-octen-3-ol,linalool,and hexanal were important aroma-active compounds in DP samples.
文摘BACKGROUND: Prognostic value of cortisol and thyroid function tests(TFTs) has previously been evaluated in medical ICUs. We aimed to evaluate prognostic efficacy of cortisol and TFTs in critically ill poisoned patients admitted to toxicology intensive care unit(ICU).METHODS: In a prospective study of consecutively enrolled subjects admitted to the toxicology ICU, lab analyses included TFTs(total T3 and T4 as well as TSH) and cortisol levels drawn between 8 am–10 am during period of the first 24 hours post-ingestion/exposure. Simplified Acute Physiology Score Ⅱ(SAPS Ⅱ) and Acute Physiology and Chronic Health Evaluation Ⅱ(APACHE Ⅱ) were recorded. All scores were compared to detect the best prognostic factor. Type of poisoning was also included.RESULTS: In 200 patients evaluated, 129 were male and mean age was 31 years. In general, SAPS Ⅱ, T4, and cortisol could prognosticate death. After regression analysis, only cortisol had such efficacy(P=0.04; OR=1.06; 95%CI=1.05–1.08; cut-off=42 μg/d L; sensitivity=70%; specificity=82%). Between aluminium phosphide(ALP)-and non ALP-poisoned patients, level of consciousness, mean arterial pressure, and cortisol level could prognosticate death in ALP poisoning(all Ps<0.001 in both uni and multivariate analyses). Median(interquartile range; IQR) GCS was 7(6, 10) and 15(8, 15) in non-ALP and ALP-poisoned patients(P<0.003). SAPS Ⅱ and APACHE Ⅱ could not prognosticate death at all.CONCLUSION: Cortisol best prognosticated outcomes for subjects admitted to the toxicology ICU. Its level is higher in ALP-poisoned patients probably due to the higher stress while they remain conscious till the final stages of toxicity and are aware of deterioration of their clinical condition or may be due to their significantly lower blood pressures.
基金supported by Shanghai Municipal Science and Technology Major Project(No.2017SHZDZX02)。
文摘The Shanghai High Repetition Rate XFEL and Extreme Light Facility(SHINE)project will use 6001.3 GHz fundamental power couplers,which are modified based on TTF-Ⅲ power couplers,for continuous-wave operation with input power up to approximately 7 kW.The first batch of 20 sets of 1.3 GHz coupler prototypes was fabricated from three domestic manufacturers for the SHINE project.To better characterize the radio frequency conditioning phenomena for validating the performance of power couplers,a room temperature test stand was designed,constructed,and commissioned for the SHINE 1.3 GHz power couplers.In addition,a horizontal test cryostat was built to test the 1.3 GHz superconducting cavities,fundamental power couplers,tuners,and other components as a set.The results of these tests indicate that the 1.3 GHz couplers are capable of handling up to 14 kW continuous waves.Herein,the main aspects of the radio frequency design and construction of the test stand,along with the test results of the high-power conditioning of the 1.3 GHz couplers,are described.
文摘Based on the plane of weakness theory, a model for predicting borehole stability in fractured reservoirs under different stress states was estiblisted and the equations for solving borehole stability were developed. The minimum downhole pressures required to maintain borehole stability under different natural fracture occurrences were calculated by using the data from a well in the Tazhong (central Tarim) area, Tarim Basin, west China. Several conclusions were drawn for naturally fractured reservoirs with a dip angle from less than 10° to greater than 30°. Application in three wells in the Tazhong area indicates that this model is practically useful.
文摘To understand the vortex-ring state and to develop an approach for predicting its boundary, a series of model rotor tests of vertical descent and oblique descent have been conducted on a newly-built test apparatus - the Whirling Beam. The test results showed some unsteady aerodynamic behavior of the model rotor operating in the vortex-ring state. A very irregular variation of the rotortorque at low rate-of-descent was observed here for the first time. We considered it to be the start of the 'power settling' and determined the critical descent velocity according to this observation. A previous criterion for the vortex-ring state was modified to give a semi-empirical method for predicting the entire vortex-ring state boundary. The computed boundary shows a good correlation with the model test results and the flight experiences.
基金the Major Programs of the National Basic Research Program of China (No.2005CB221503)the National Natural Science Foundation of China (Nos. 70533050 and 50674089) for their support of this project
文摘For a study of the movement and deformation of coal-rock mass and low protected seams below a stope,as well as for fracture developments and rules of evolution of permeability,we designed a plane strain model test stand to carry out model tests of similar materials in order to improve the effect of gas drainage from low protected seams and to measure the movement and deformation of coal-rock mass using a method of non-contact close-range photogrammetry.Our results show that 1) using paraffin melting to take the place of coal seam mining can satisfy the mining conditions of a protective seam;2) coal-rock mass under goafs has an upward movement after the protective seam has been mined,causing floor heaving;3) low protected seams become swollen and deformed,providing a good pressure-relief effect and causing the coal-rock mass under both sides of coal pillars to become deformed by compression and 4) the evolution of permeability of low protected seams follows the way of initial values→a slight decrease→a great increase→stability→final decrease.Simultaneously,the coefficient of air permeability increased at a decreasing rate with an increase in interlayer spacing.
基金financially supported by Jingfeng InternationalInvestment Co.,LtdAnhui University of Science & Technology for its support
文摘This article presented an experimental research on washability of microcrystal graphite using float-sink tests.Chemical and X-ray analyses showed that graphite,semi-graphite,meta-anthracite,and anthracite existed together in this microcrystal graphite sample;and the intergrowth relationship between microcrystal graphite and gangues was very complicated based on optical mineralogy research.The results of float-sink tests revealed that:for the-25+0.5 mm size fraction,about 68%(by weight)of microcrystal graphite was obtained at the density of 2.0 g/cm^3.and the float product met the standard of commercial grade W65;for the-0.5 mm size fraction,58%(by weight)of microcrystal graphite was floated at the density of 2.0 g/cm^3,which met the standard of commercial grade W70.It can be concluded that microcrystal graphite may be upgraded by dense media separation(DMS)providing a float product using as the raw materials of casting or refractories.