期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
TensorFlow Lite:端侧机器学习框架
被引量:
29
1
作者
李双峰
《计算机研究与发展》
EI
CSCD
北大核心
2020年第9期1839-1853,共15页
TensorFlow Lite(TFLite)是一个轻量、快速、跨平台的专门针对移动和IoT场景的开源机器学习框架,是TensorFlow的一部分,支持安卓、iOS、嵌入式Linux以及MCU等多个平台部署.它大大降低开发者使用门槛,加速端侧机器学习的发展,推动机器学...
TensorFlow Lite(TFLite)是一个轻量、快速、跨平台的专门针对移动和IoT场景的开源机器学习框架,是TensorFlow的一部分,支持安卓、iOS、嵌入式Linux以及MCU等多个平台部署.它大大降低开发者使用门槛,加速端侧机器学习的发展,推动机器学习无处不在.介绍了端侧机器学习的浪潮、挑战和典型应用;TFLite的起源和系统架构;TFLite的最佳实践,以及适合初学者的工具链;展望了未来的发展方向.
展开更多
关键词
机器学习
端侧机器学习
tensorflow
tensorflow
lite
TF
lite
移动
物联网
在线阅读
下载PDF
职称材料
基于YOLOv5s和Android部署的电气设备识别
被引量:
4
2
作者
廖晓辉
谢子晨
路铭硕
《郑州大学学报(工学版)》
北大核心
2024年第1期122-128,共7页
针对变电站多种电气设备实时检测的需求,提出了一种基于改进YOLOv5s的电气设备识别方法,并设计基于Android部署的电气设备识别APP,以便对电气设备进行识别与学习。以电力变压器、绝缘子串等6种常见变电站电气设备为例构建图像数据集。...
针对变电站多种电气设备实时检测的需求,提出了一种基于改进YOLOv5s的电气设备识别方法,并设计基于Android部署的电气设备识别APP,以便对电气设备进行识别与学习。以电力变压器、绝缘子串等6种常见变电站电气设备为例构建图像数据集。数据集进行图像预处理后对YOLOv5s算法进行改进。通过引入C2f模块提高小目标检测精度,采用Soft-NMS提高检测框筛选能力,减少漏检和误检的情况,使用改进后的算法对数据集进行模型训练。将训练好的识别网络模型通过TensorFlow Lite框架进行模型部署,设计电气设备识别APP。经验证,改进后的变电站电气设备识别网络模型mAP稳定在91.6%,与原模型相比提高了3.3百分点。部署后的APP具有设备识别和设备介绍等界面,使用移动端进行识别时每张图片识别时间都小于1 s,具有较快的识别速度和较高的识别精度,可以高效地实现变电站电气设备的实时检测与设备学习。
展开更多
关键词
电气设备
改进YOLOv5s
ANDROID
tensorflow
lite
图像识别
在线阅读
下载PDF
职称材料
题名
TensorFlow Lite:端侧机器学习框架
被引量:
29
1
作者
李双峰
机构
Google TensorFlow团队
出处
《计算机研究与发展》
EI
CSCD
北大核心
2020年第9期1839-1853,共15页
文摘
TensorFlow Lite(TFLite)是一个轻量、快速、跨平台的专门针对移动和IoT场景的开源机器学习框架,是TensorFlow的一部分,支持安卓、iOS、嵌入式Linux以及MCU等多个平台部署.它大大降低开发者使用门槛,加速端侧机器学习的发展,推动机器学习无处不在.介绍了端侧机器学习的浪潮、挑战和典型应用;TFLite的起源和系统架构;TFLite的最佳实践,以及适合初学者的工具链;展望了未来的发展方向.
关键词
机器学习
端侧机器学习
tensorflow
tensorflow
lite
TF
lite
移动
物联网
Keywords
machine learning
on-device machine learning(ODML)
tensorflow
tensorflow lite
TF
lite
mobile
IoT
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
基于YOLOv5s和Android部署的电气设备识别
被引量:
4
2
作者
廖晓辉
谢子晨
路铭硕
机构
郑州大学电气与信息工程学院
出处
《郑州大学学报(工学版)》
北大核心
2024年第1期122-128,共7页
基金
河南省自然科学基金资助项目(232300421198)
河南省科技攻关计划项目(222102220053)。
文摘
针对变电站多种电气设备实时检测的需求,提出了一种基于改进YOLOv5s的电气设备识别方法,并设计基于Android部署的电气设备识别APP,以便对电气设备进行识别与学习。以电力变压器、绝缘子串等6种常见变电站电气设备为例构建图像数据集。数据集进行图像预处理后对YOLOv5s算法进行改进。通过引入C2f模块提高小目标检测精度,采用Soft-NMS提高检测框筛选能力,减少漏检和误检的情况,使用改进后的算法对数据集进行模型训练。将训练好的识别网络模型通过TensorFlow Lite框架进行模型部署,设计电气设备识别APP。经验证,改进后的变电站电气设备识别网络模型mAP稳定在91.6%,与原模型相比提高了3.3百分点。部署后的APP具有设备识别和设备介绍等界面,使用移动端进行识别时每张图片识别时间都小于1 s,具有较快的识别速度和较高的识别精度,可以高效地实现变电站电气设备的实时检测与设备学习。
关键词
电气设备
改进YOLOv5s
ANDROID
tensorflow
lite
图像识别
Keywords
electrical equipment
improved of YOLOv5s
Android
tensorflow lite
image identification
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
TensorFlow Lite:端侧机器学习框架
李双峰
《计算机研究与发展》
EI
CSCD
北大核心
2020
29
在线阅读
下载PDF
职称材料
2
基于YOLOv5s和Android部署的电气设备识别
廖晓辉
谢子晨
路铭硕
《郑州大学学报(工学版)》
北大核心
2024
4
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部