期刊文献+
共找到180篇文章
< 1 2 9 >
每页显示 20 50 100
A new discriminative sparse parameter classifier with iterative removal for face recognition
1
作者 TANG De-yan ZHOU Si-wang +2 位作者 LUO Meng-ru CHEN Hao-wen TANG Hui 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第4期1226-1238,共13页
Face recognition has been widely used and developed rapidly in recent years.The methods based on sparse representation have made great breakthroughs,and collaborative representation-based classification(CRC)is the typ... Face recognition has been widely used and developed rapidly in recent years.The methods based on sparse representation have made great breakthroughs,and collaborative representation-based classification(CRC)is the typical representative.However,CRC cannot distinguish similar samples well,leading to a wrong classification easily.As an improved method based on CRC,the two-phase test sample sparse representation(TPTSSR)removes the samples that make little contribution to the representation of the testing sample.Nevertheless,only one removal is not sufficient,since some useless samples may still be retained,along with some useful samples maybe being removed randomly.In this work,a novel classifier,called discriminative sparse parameter(DSP)classifier with iterative removal,is proposed for face recognition.The proposed DSP classifier utilizes sparse parameter to measure the representation ability of training samples straight-forward.Moreover,to avoid some useful samples being removed randomly with only one removal,DSP classifier removes most uncorrelated samples gradually with iterations.Extensive experiments on different typical poses,expressions and noisy face datasets are conducted to assess the performance of the proposed DSP classifier.The experimental results demonstrate that DSP classifier achieves a better recognition rate than the well-known SRC,CRC,RRC,RCR,SRMVS,RFSR and TPTSSR classifiers for face recognition in various situations. 展开更多
关键词 collaborative representation-based classification discriminative sparse parameter classifier face recognition iterative removal sparse representation two-phase test sample sparse representation
在线阅读 下载PDF
基于张量字典学习的高光谱图像稀疏表示分类 被引量:1
2
作者 宫学亮 李玉 +2 位作者 贾淑涵 赵泉华 王丽英 《光谱学与光谱分析》 北大核心 2025年第3期798-807,共10页
高光谱图像因其蕴含十分丰富的光谱和空间信息已被广泛应用于生产生活的各个领域。为了充分挖掘高光谱图像中蕴含的光谱和空间信息,从高光谱数据固有的三维属性出发,以空-谱张量为基本处理单元,提出一种基于张量字典学习的稀疏表示分类(... 高光谱图像因其蕴含十分丰富的光谱和空间信息已被广泛应用于生产生活的各个领域。为了充分挖掘高光谱图像中蕴含的光谱和空间信息,从高光谱数据固有的三维属性出发,以空-谱张量为基本处理单元,提出一种基于张量字典学习的稀疏表示分类(Tensor-DLSRC)算法,以提高高光谱图像分类精度。首先,构建以像素及其空间邻域像素光谱向量组成的像素空-谱张量;其次,将作为训练样本像素的空-谱张量按照不同维度展开成矩阵,并以其列向量均值作为字典原子组成初始化张量字典;同时,在张量稀疏性约束条件下构建张量稀疏表示(Tensor-SR)模型,并利用张量字典学习算法学习一组能够精确刻画该类张量空-谱特征的字靛矩阵;最后,对待分类像素利用Tensor-SR模型求解其空-谱张量的稀疏表示系数张量,根据重构残差最小化原则确定该像素类别。为了分析参数对提出算法分类精度的影响,在进行分类对比实验之前,通过一系列实验分别讨论训练样本数M、邻域窗口尺寸(2δ+1)×(2δ+1)、字典学习阶段的稀疏度μ1和稀疏表示阶段的稀疏度μ2等参数对总体分类精度(OA)的影响。为了验证提出算法的有效性,分别在Indian Pines、Salinas和Xuzhou三个高光谱数据上进行实验,对比分析本算法与基于光谱向量的SRC算法和DLSRC算法、增加邻域空间信息的JSRC算法和DLJSRC算法和基于空-谱张量的Tensor-DLSRC算法等五种算法的分类结果,并采用基于混淆矩阵的平均准确率(APR)、平均精度(PA)、OA和Kappa系数对分类结果定量分析。所提出的Tensor-DLSRC算法在OA和Kappa系数的平均值水平是六种算法中最高的,且具有最小的标准差,说明本算法与五种其他算法相比能够提供更准确且稳定的分类结果。 展开更多
关键词 高光谱图像 空-谱张量 稀疏表示 张量字典学习 张量稀疏表示分类
在线阅读 下载PDF
引信目标与干扰信号稀疏分类识别方法
3
作者 刘冰 郝新红 +2 位作者 秦高林 时明心 刘佳琪 《北京航空航天大学学报》 北大核心 2025年第2期498-506,共9页
为提升复杂电磁环境战场中调频无线电引信的抗干扰能力,基于稀疏表示理论,将稀疏表示系数重构用于调频无线电的目标和干扰信号分类识别,提出一种目标信号和扫频式干扰信号的分类识别方法,解决了调频无线电引信的抗干扰能力不足的问题。... 为提升复杂电磁环境战场中调频无线电引信的抗干扰能力,基于稀疏表示理论,将稀疏表示系数重构用于调频无线电的目标和干扰信号分类识别,提出一种目标信号和扫频式干扰信号的分类识别方法,解决了调频无线电引信的抗干扰能力不足的问题。采集了模拟目标及干扰信号作用于无线电引信的检波端输出信号,构建了目标信号过完备字典和干扰信号过完备字典,分别将测试信号在2类字典上进行稀疏分解并重构,依据重构误差对测试样本类别进行识别。结果表明:基于稀疏表示的调频无线电引信目标和干扰信号分类识别方法,可以对目标和干扰信号进行有效的识别,同时能够满足较低的虚警概率。研究成果对于调频无线电引信在复杂电磁环境中的抗干扰具有重要的借鉴意义。 展开更多
关键词 调频无线电引信 抗干扰 电子战 稀疏表示 信号分类
在线阅读 下载PDF
基于自适应矩阵的核联合稀疏表示高光谱图像分类
4
作者 陈善学 夏馨 《遥感信息》 CSCD 北大核心 2024年第2期19-27,共9页
针对高光谱图像丰富的空间信息和光谱信息未充分利用的问题,提出了基于自适应矩阵的核联合稀疏表示高光谱图像分类的方法。在特征表示阶段,定义了自适应矩阵特征,通过结合自适应邻域块策略与非线性相关熵度量构成的特征来描述原始光谱像... 针对高光谱图像丰富的空间信息和光谱信息未充分利用的问题,提出了基于自适应矩阵的核联合稀疏表示高光谱图像分类的方法。在特征表示阶段,定义了自适应矩阵特征,通过结合自适应邻域块策略与非线性相关熵度量构成的特征来描述原始光谱像素,充分融合了形状可变的空间信息与非线性光谱信息。在分类阶段,考虑自适应矩阵和高光谱图像非线性,采用对数欧式核函数,构建了核联合稀疏表示模型,以获得重构误差。同时利用字典空间信息构建了矩阵相关性,引入平衡参数实现了稀疏重构误差与矩阵相关性的联合分类。在两个数据集上的实验结果表明,该算法充分利用了高光谱图像的空间信息、光谱信息,能够有效提高分类精度。 展开更多
关键词 高光谱图像分类 核联合稀疏表示 自适应邻域块 自适应矩阵 矩阵相关性
在线阅读 下载PDF
多源声发射信号混合重叠组稀疏分类研究
5
作者 邓韬 刘哲潮 +1 位作者 汪华章 何磊 《计量学报》 CSCD 北大核心 2024年第1期64-72,共9页
针对高速列车车体裂纹声发射检测的多源、波模式重叠及噪声干扰问题,提出一种基于本征模态的混合重叠组稀疏(MOGS)分类方法用于声发射源识别。MOGS是一种兼顾组间和组内稀疏,同时允许类间特征重叠的结构稀疏模型。设计了一种新的噪声预... 针对高速列车车体裂纹声发射检测的多源、波模式重叠及噪声干扰问题,提出一种基于本征模态的混合重叠组稀疏(MOGS)分类方法用于声发射源识别。MOGS是一种兼顾组间和组内稀疏,同时允许类间特征重叠的结构稀疏模型。设计了一种新的噪声预分解矩阵以降低本征模态分解计算量,选取目标特征频带模态为分类样本来提高类间差异。通过K-SVD层次稀疏组套索罚训练MOGS类别字典,并给出一种罚函数块坐标可分离的近似光滑处理过程以实现MOGS套索求解。实验表明,该方法对几类多源含噪信号分类准确率均高于80%,在识别率和波形重构效果上优于对比方法。 展开更多
关键词 声学计量 声发射 组稀疏分类 混合重叠组稀疏 多源信号识别
在线阅读 下载PDF
联合核稀疏表示和增强字典的SAR目标识别方法 被引量:1
6
作者 李振汕 丁柏圆 《电光与控制》 CSCD 北大核心 2024年第8期44-49,共6页
为提高合成孔径雷达(SAR)图像目标识别性能,以传统稀疏表示分类(SRC)为基础,提出联合核稀疏表示分类(KSRC)和增强字典的方法。KSRC在SRC的基础上引入非线性核函数,从而提升分类器对于非线性数据关系的表征能力。增强字典在原始训练样本... 为提高合成孔径雷达(SAR)图像目标识别性能,以传统稀疏表示分类(SRC)为基础,提出联合核稀疏表示分类(KSRC)和增强字典的方法。KSRC在SRC的基础上引入非线性核函数,从而提升分类器对于非线性数据关系的表征能力。增强字典在原始训练样本的基础上,通过噪声添加和部分遮挡扩展原始字典,提升其对典型扩展操作条件的适应能力。同时,增强字典在KSRC的作用下,可以进一步提升对其他相关扩展操作条件的覆盖程度,从而提升识别方法对于多类扩展操作条件的有效性。以MSTAR数据集为基础开展实验,设置了标准操作条件以及噪声干扰、部分遮挡、型号差异等扩展操作条件,实验结果显示了本文方法的优势性能。 展开更多
关键词 合成孔径雷达 目标识别 核稀疏表示分类 增强字典 扩展操作条件
在线阅读 下载PDF
基于空间相关性约束稀疏表示的高光谱图像分类 被引量:15
7
作者 刘建军 吴泽彬 +2 位作者 韦志辉 肖亮 孙乐 《电子与信息学报》 EI CSCD 北大核心 2012年第11期2666-2671,共6页
该文提出一种新的基于稀疏表示的高光谱图像分类方法。首先利用训练数据构造结构化字典,建立基于稀疏表示的高光谱图像分类模型;然后添加空间相关性约束项和训练数据的空间信息,提高稀疏表示模型分类的准确性;最后采用快速的交替方向乘... 该文提出一种新的基于稀疏表示的高光谱图像分类方法。首先利用训练数据构造结构化字典,建立基于稀疏表示的高光谱图像分类模型;然后添加空间相关性约束项和训练数据的空间信息,提高稀疏表示模型分类的准确性;最后采用快速的交替方向乘子法求解模型。实验结果表明:该文方法能够有效提高分类精度,且分类结果稳定。 展开更多
关键词 高光谱图像 稀疏表示 分类 空间相关性
在线阅读 下载PDF
基于图像块分类稀疏表示的超分辨率重构算法 被引量:52
8
作者 练秋生 张伟 《电子学报》 EI CAS CSCD 北大核心 2012年第5期920-925,共6页
目前基于图像块稀疏表示的超分辨率重构算法对所有图像块都用同一字典表示,不能反映不同类型图像块间的差别.针对这一缺点,本文提出基于图像块分类稀疏表示的方法.该方法先利用图像局部特征将图像块分为平滑、边缘和不规则结构三种类型... 目前基于图像块稀疏表示的超分辨率重构算法对所有图像块都用同一字典表示,不能反映不同类型图像块间的差别.针对这一缺点,本文提出基于图像块分类稀疏表示的方法.该方法先利用图像局部特征将图像块分为平滑、边缘和不规则结构三种类型,其中边缘块细分为多个方向.然后利用稀疏表示方法对边缘和不规则结构块分别训练各自对应的低分辨率和高分辨率字典.重构时对平滑块利用简单双三次插值方法,边缘和不规则结构块由其对应的高、低分辨率字典通过正交匹配追踪算法重构.实验结果表明,与单字典稀疏表示算法相比,本文算法对图像边缘部分重构质量明显改善,同时重构速度显著提高. 展开更多
关键词 超分辨率 稀疏表示 块分类 正交匹配追踪
在线阅读 下载PDF
基于稀疏表示的绝缘子紫外图谱闪络状态分类评估方法 被引量:13
9
作者 刘云鹏 纪欣欣 +1 位作者 裴少通 王胜辉 《高电压技术》 EI CAS CSCD 北大核心 2018年第10期3352-3358,共7页
绝缘子运行状态的检测和故障诊断对于维持电力系统安全稳定运行至关重要。针对目前存在输变电绝缘子的紫外检测图像故障特征不明显、诊断准确率不高的问题,提出了一种基于稀疏表示法的绝缘子紫外图谱的闪络状态分类评估方法。通过字典... 绝缘子运行状态的检测和故障诊断对于维持电力系统安全稳定运行至关重要。针对目前存在输变电绝缘子的紫外检测图像故障特征不明显、诊断准确率不高的问题,提出了一种基于稀疏表示法的绝缘子紫外图谱的闪络状态分类评估方法。通过字典学习构建图谱信号自适应的过完备字典,采用加速近邻梯度算法和正交匹配追踪算法对待测紫外图像进行稀疏求解,依据稀疏矩阵的非零项进行分类诊断。结果表明,该方法的检测准确率较高,最高可达98%,其中正交匹配追踪算法依赖于字典的健全程度,当训练样本充足时算法识别时间仅为0.000 8 s。而加速近邻梯度算法则选取多个较优参量,适用于样本量较小的分类评估。此外,稀疏度参数敏感度较低,具有较好的鲁棒性。该算法同多分类支持向量机(M-SVM)算法相比,具有更好的表现性能,在绝缘子紫外检测分级预警和故障检测方面具有良好的应用前景。 展开更多
关键词 绝缘子 稀疏表示 紫外图谱 闪络分级 正交匹配追踪法 加速近邻梯度法
在线阅读 下载PDF
基于稀疏表示的低分辨率人脸疲劳表情识别 被引量:4
10
作者 张灵 田小路 +2 位作者 罗源 常捷 吴勇 《计算机科学》 CSCD 北大核心 2016年第9期305-309,共5页
为了有效提高低分辨率图像的人脸疲劳表情识别性能,提出一种基于稀疏表示的低分辨率人脸疲劳表情的识别方法。首先,采用肯德尔和谐系数可信度分析法构建了低分辨率人脸疲劳表情图像库TIREDFACE。其次,通过图像库中的低分辨率样本疲劳表... 为了有效提高低分辨率图像的人脸疲劳表情识别性能,提出一种基于稀疏表示的低分辨率人脸疲劳表情的识别方法。首先,采用肯德尔和谐系数可信度分析法构建了低分辨率人脸疲劳表情图像库TIREDFACE。其次,通过图像库中的低分辨率样本疲劳表情图像进行稀疏表示,再利用压缩感知理论寻求低分辨率测试样本的最稀疏解,采用求得的最稀疏解实现低分辨率人脸疲劳表情的分类。在低分辨率人脸视觉特征的疲劳表情图像库TIREDFACE的实验测试结果表明,将该方法用于低分辨人脸疲劳表情识别,性能优于线性法、最近邻法、支持向量机以及最近邻子空间法。可见,该方法用于低分辨率人脸疲劳表情识别时识别效果较好,精确度较高。 展开更多
关键词 稀疏表示 压缩感知 疲劳表情 基于稀疏表示分类 肯德尔和谐系数
在线阅读 下载PDF
基于稀疏表示及光谱信息的高光谱遥感图像分类 被引量:73
11
作者 宋相法 焦李成 《电子与信息学报》 EI CSCD 北大核心 2012年第2期268-272,共5页
该文结合稀疏表示及光谱信息提出了一种新的高光谱遥感图像分类算法。首先提出利用高光谱遥感图像数据集构造学习字典,然后根据学习字典计算每个像元的稀疏系数,从而获得像元的稀疏表示特征,最后根据稀疏表示特征和光谱信息分别构造随... 该文结合稀疏表示及光谱信息提出了一种新的高光谱遥感图像分类算法。首先提出利用高光谱遥感图像数据集构造学习字典,然后根据学习字典计算每个像元的稀疏系数,从而获得像元的稀疏表示特征,最后根据稀疏表示特征和光谱信息分别构造随机森林,通过投票机制得到最终的分类结果。在AVIRIS高光谱遥感图像上的实验结果表明:该文所提方法能够提高分类效果,且其分类总精度和Kappa系数要高于光谱信息和稀疏表示特征方法。 展开更多
关键词 图像处理 高光谱遥感图像 稀疏表示 分类 随机森林
在线阅读 下载PDF
基于多尺度分割的高光谱图像稀疏表示与分类 被引量:19
12
作者 唐中奇 付光远 +1 位作者 陈进 张利 《光学精密工程》 EI CAS CSCD 北大核心 2015年第9期2708-2714,共7页
针对高光谱特征的稀疏表示,提出了一种基于多尺度分割的空间加权算法用于高光谱图像分类。该算法采用更合理的邻域定义挖掘空间先验信息,优化类边缘像元的稀疏表示。首先,通过多尺度分割提供邻域空间约束;结合拉普拉斯尺度混合(LSM)先验... 针对高光谱特征的稀疏表示,提出了一种基于多尺度分割的空间加权算法用于高光谱图像分类。该算法采用更合理的邻域定义挖掘空间先验信息,优化类边缘像元的稀疏表示。首先,通过多尺度分割提供邻域空间约束;结合拉普拉斯尺度混合(LSM)先验,分别对每个邻域组内像元进行空间加权的稀疏表示。然后,采用概率支持向量机(SVM)分类,同时提供像元的分类标签及其置信度。最后,以此置信度为权重,对多尺度分类图进行加权融合,生成最终的分类图。实验显示,本文算法能够增强光谱特征表示的稀疏性和鲁棒性,提高总体分类精度;在小样本训练下,单类的分类精度可提升30%左右,表明该算法在高光谱应用中具有较强的实用性。 展开更多
关键词 高光谱图像分类 光谱稀疏表示 空间先验融合 多尺度策略
在线阅读 下载PDF
随机降维映射稀疏表示的电能质量扰动多分类研究 被引量:18
13
作者 沈跃 刘国海 刘慧 《仪器仪表学报》 EI CAS CSCD 北大核心 2011年第6期1371-1376,共6页
提出一种随机降维映射特征提取与稀疏表示分类相结合的电能质量扰动信号识别方法。首先将扰动信号测试样本表示为训练样本集的过完备字典稀疏线性组合,然后使用随机测量矩阵获取测试样本降维特征量和稀疏表示感知矩阵,应用最小L1范数解... 提出一种随机降维映射特征提取与稀疏表示分类相结合的电能质量扰动信号识别方法。首先将扰动信号测试样本表示为训练样本集的过完备字典稀疏线性组合,然后使用随机测量矩阵获取测试样本降维特征量和稀疏表示感知矩阵,应用最小L1范数解决方案求取扰动信号测试样本的稀疏解,由冗余误差最小值确定目标归属类,实现对电能质量扰动的稀疏表示多分类识别。研究表明随机矩阵降维映射特征提取不依赖于电能扰动样本特性,构造简单,运算快速,具有普适性;稀疏表示分类法与支持向量机相比无需组合多个二分类器来实现多分类器。仿真和实验结果表明该方法能有效提取各种电能扰动特征,抗噪声鲁棒性好,在信噪比20 dB以上的噪声环境中电能质量扰动分类准确率达95%以上。 展开更多
关键词 电能质量 扰动分类 压缩感知 随机矩阵 降维映射 稀疏表示分类 最小L1范数
在线阅读 下载PDF
一种快速的基于稀疏表示分类器 被引量:19
14
作者 陈才扣 喻以明 史俊 《南京大学学报(自然科学版)》 CSCD 北大核心 2012年第1期70-76,共7页
基于稀疏表示的分类器(sparse representation-based classifier,SRC)被证实是一种非常有效的分类器.但SRC往往要通过一个超完备基来求得测试样本的稀疏表示,当数据库的数据量较大时,算法的计算复杂度成为限制其优良性能的瓶颈,致使SRC... 基于稀疏表示的分类器(sparse representation-based classifier,SRC)被证实是一种非常有效的分类器.但SRC往往要通过一个超完备基来求得测试样本的稀疏表示,当数据库的数据量较大时,算法的计算复杂度成为限制其优良性能的瓶颈,致使SRC无法用于实时识别.针对该问题,提出一种简便有效的改进算法,其试图寻求一个较小的超完备基来计算测试样本的稀疏表示,从而大大的缩减算法的计算复杂度.具体来说,对于每个测试样本点,首先,求出该测试样本点可能归属的类别,而后利用可能归属类的样本而并非所有的训练样本来对测试样本进行稀疏表示计算.ORL人脸库和FERET人脸库上的实验结果表明改进算法不仅能较大程度的缩减算法的计算复杂度,而且排除了干扰类的影响,从而在某种程度上提高了算法的识别率. 展开更多
关键词 稀疏表示 K-近邻 邻近类 分类方法 人脸识别
在线阅读 下载PDF
基于图像分解与字典分类的单幅图像去雨算法 被引量:7
15
作者 庞彦伟 周俊 +1 位作者 邓君坪 何宇清 《天津大学学报(自然科学与工程技术版)》 EI CSCD 北大核心 2017年第4期391-398,共8页
针对单幅图像下,基于稀疏表示的去雨算法存在残差较大而导致图像恢复效果不理想的问题,提出了一种优化图像高频部分几何分量的去雨方法.首先采用平滑滤波做图像分解,得到雨图像的高频部分;然后结合稀疏表示与近邻传播算法分离出图像高... 针对单幅图像下,基于稀疏表示的去雨算法存在残差较大而导致图像恢复效果不理想的问题,提出了一种优化图像高频部分几何分量的去雨方法.首先采用平滑滤波做图像分解,得到雨图像的高频部分;然后结合稀疏表示与近邻传播算法分离出图像高频部分的雨分量,用图像的高频部分减去雨分量并做平滑处理,以此作为几何分量;此外,对稀疏表示过程得到的字典进行再分类,完善雨分量与非雨分量的区分,最后完成图像恢复.实验结果表明,该方法能有效利用图像的几何信息来解决纹理恢复误差较大的问题,实现更精确的纹理恢复和雨分量去除. 展开更多
关键词 单幅图像去雨 纹理恢复 稀疏表示 字典分类
在线阅读 下载PDF
基于压缩感知的地基红外云图云状识别 被引量:5
16
作者 韩文宇 刘磊 +3 位作者 高太长 李云 胡帅 张孝忠 《应用气象学报》 CSCD 北大核心 2015年第2期231-239,共9页
为了对地基全天空红外测云仪获得的云图进行分类,该文从压缩感知理论出发,提出了一种利用云图灰度稀疏性进行云状识别的新方法。首先运用典型云图样本构造冗余字典,然后通过梯度投影(GPSR)算法和正交匹配(OMP)算法求取测试样本在冗余字... 为了对地基全天空红外测云仪获得的云图进行分类,该文从压缩感知理论出发,提出了一种利用云图灰度稀疏性进行云状识别的新方法。首先运用典型云图样本构造冗余字典,然后通过梯度投影(GPSR)算法和正交匹配(OMP)算法求取测试样本在冗余字典中的l^1范式最优解,最后利用残差法和稀疏比例法对云状进行判别并输出。采用压缩感知理论进行云状识别,降低了对特征提取技术的要求,为云状的自动识别提供了新思路,对典型波状云、层状云、积状云、卷云和晴空的总体识别率分别达到75%,91%,70%,85%和93%,平均识别率为82.8%。 展开更多
关键词 红外云图 压缩感知 稀疏表示 云状识别
在线阅读 下载PDF
基于稀疏表示字典学习的植物分类方法 被引量:8
17
作者 张善文 孔韦韦 王震 《浙江农业学报》 CSCD 北大核心 2017年第2期338-344,共7页
基于叶片图像的植物分类方法研究是植物分类学的一个重要研究方向。由于叶片图像的复杂性和对季节、光照等条件比较敏感,使得现有的植物分类方法的分类效果不佳。该文提出了一种基于稀疏表示字典学习的植物物种识别方法,该方法将植物分... 基于叶片图像的植物分类方法研究是植物分类学的一个重要研究方向。由于叶片图像的复杂性和对季节、光照等条件比较敏感,使得现有的植物分类方法的分类效果不佳。该文提出了一种基于稀疏表示字典学习的植物物种识别方法,该方法将植物分类问题转化为求解待分类叶片图像对于训练样本植物叶片图像的稀疏表示问题;再利用面向植物叶片图像类别的字典学习,寻求一个较小的、并经过优化的超完备字典来计算待识别叶片图像的稀疏表示。与已有植物分类方法比较,该方法的创新点为直接对原始叶片图像进行处理,不需要从每幅叶片图像中提取颜色、纹理和形状等分类特征,从而极大降低了植物分类方法的复杂度,提高了分类方法的实时性和鲁棒性。在公开的植物叶片图像数据库中对50类植物叶片图像进行了分类实验,识别率高达92%以上。 展开更多
关键词 植物分类 叶片图像 稀疏表示 字典学习
在线阅读 下载PDF
一种面向信号分类的匹配追踪新方法 被引量:9
18
作者 王磊 周乐囡 +1 位作者 姬红兵 林琳 《电子与信息学报》 EI CSCD 北大核心 2014年第6期1299-1306,共8页
匹配追踪(MP)的主要策略是通过每次迭代时选择一个局部最优解,从而逐步逼近原始信号。然而传统的MP系列算法进行原子匹配时,各类原子集间存在交集,从而影响了原子的表示能力以及相应的分类效果。基于此,该文提出一种适用于信号监督分类... 匹配追踪(MP)的主要策略是通过每次迭代时选择一个局部最优解,从而逐步逼近原始信号。然而传统的MP系列算法进行原子匹配时,各类原子集间存在交集,从而影响了原子的表示能力以及相应的分类效果。基于此,该文提出一种适用于信号监督分类的匹配追踪新算法。其原子挑选的准则为:同类信号采用相同的原子集匹配,获取相同的类内表示结构;异类信号选择不同的原子集匹配,从而增强信号的类间差异。示例分析表明,使原子集间相互独立,能够减少异类信号间的共性因素,强化信号间的区分度,从而有利于提升分类识别效果。通过在标准图像库和实测雷达辐射源信号集上的实验表明,较之传统的MP系列方法,所提算法对噪声和遮挡具有更强的鲁棒性。 展开更多
关键词 匹配追踪 雷达辐射源识别 稀疏表示 特征提取 监督分类
在线阅读 下载PDF
基于稀疏表示权重张量的音频特征提取算法 被引量:5
19
作者 林静 杨继臣 +1 位作者 张雪源 李新超 《计算机应用》 CSCD 北大核心 2016年第5期1426-1429,1438,共5页
为了更好地描述非平稳音频信号的特征,提出了一种基于Gabor字典和稀疏表示权重张量的时-频音频特征提取方法。该方法基于Gabor字典将音频信号编码为稀疏的权重向量,并进一步将权重向量中的元素重新排列为张量形式,该张量各阶分别刻画了... 为了更好地描述非平稳音频信号的特征,提出了一种基于Gabor字典和稀疏表示权重张量的时-频音频特征提取方法。该方法基于Gabor字典将音频信号编码为稀疏的权重向量,并进一步将权重向量中的元素重新排列为张量形式,该张量各阶分别刻画了信号的时间、频率以及时长特性,为信号的联合时-频-长表示。通过对该张量进行因子分解,将分解后得到的频率因子和时长因子拼接为音频特征。针对稀疏张量分解时容易产生过拟合的问题,提出一种自调整惩罚参数分解算法并进行了改进。实验结果显示,所提出的特征相对于传统梅尔倒谱系数(MFCC)特征、MFCC特征及匹配追踪算法(MP)求解的特征联合拼接得到的MFCC+MP特征和非均匀尺度-频率图特征对15类音效分类效果分别提升了28.0%、19.8%和6.7%。 展开更多
关键词 稀疏表示 张量因子分解 音效分类 时-频特征
在线阅读 下载PDF
稀疏表示分类中遮挡字典构造方法的改进 被引量:6
20
作者 朱明旱 李树涛 叶华 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2014年第11期2064-2069,2078,共7页
针对稀疏表示分类算法中遮挡字典维数高且无冗余的问题,提出一种遮挡字典构造方法.首先通过图像分块得到各级的遮挡基图像;然后将所有互不相同的遮挡基图像按字典顺序转化为向量,并用这些向量作为遮挡字典的列,从而构造出维数相对较低... 针对稀疏表示分类算法中遮挡字典维数高且无冗余的问题,提出一种遮挡字典构造方法.首先通过图像分块得到各级的遮挡基图像;然后将所有互不相同的遮挡基图像按字典顺序转化为向量,并用这些向量作为遮挡字典的列,从而构造出维数相对较低且具有一定冗余度的遮挡字典.实验结果表明,该方法不仅明显提高了稀疏表示分类算法对遮挡人脸的识别率,而且还能通过减少图像的分块级数降低稀疏分解的耗时量,提高运算效率. 展开更多
关键词 稀疏表示分类 遮挡字典 人脸识别
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部