为了解决张量鲁棒主成分分析(tensor robust principal component analysis,TRPCA)还原低秩结构时同等收缩奇异值造成的信息提取偏差问题,本文考虑区别对待奇异值,使用非凸加权张量Schatten-p范数(0<p<1)分析张量数据,可减少对奇...为了解决张量鲁棒主成分分析(tensor robust principal component analysis,TRPCA)还原低秩结构时同等收缩奇异值造成的信息提取偏差问题,本文考虑区别对待奇异值,使用非凸加权张量Schatten-p范数(0<p<1)分析张量数据,可减少对奇异值的惩罚。为解决数据受损严重难以恢复的问题,提出低秩预分离的方法实现近似低秩部分和近似稀疏部分的预先分离;为增强高阶张量之间相关性同时降低数据对特定噪声的敏感性,提出随机抖动正则器的机制对预分离后成分分别选取随机区域优化,利用噪声信息的随机性来正则化算法得以约束模型的复杂度;最后使用不同类型的图像数据集,包括彩色图像、核磁共振图像、高光谱及多光谱图像和灰度视频,进行高维数据恢复实验。结果表明该方法在图像恢复性能上明显优于其他TRPCA方法,并且在数据受损严重时同样具有优势,有效提取主成分信息的同时减小数据对特定噪声的依赖,具有较强的鲁棒性和适应性,可为TRPCA方法在图像恢复领域中提供参考。展开更多
为了解决高比例分布式电源(distributed generation,DG)大规模并网后实时量测数目缺失、传统预测辅助状态估计方法(forecasting-aided state estimation,FASE)估计精度有限等问题,提出了基于改进Crossformer伪量测构建的主动配电网FASE...为了解决高比例分布式电源(distributed generation,DG)大规模并网后实时量测数目缺失、传统预测辅助状态估计方法(forecasting-aided state estimation,FASE)估计精度有限等问题,提出了基于改进Crossformer伪量测构建的主动配电网FASE方法。首先,基于最大信息系数法(maximal information coefficient,MIC)筛选出高相关性的输入特征,提高预测模型的精度;然后,通过全变差正则化技术(total variation regularized,TV)优化鲁棒主成分分析法(robust principal component analysis,RPCA),构建TRPCA层,并将其嵌入到Crossformer中,以填补Crossformer无法有效处理非高斯噪声的空白;最后,利用改进的预测模型进行超短期负荷预测,经潮流计算得到节点伪量测,在量测不足情况下补全缺失数据,并结合扩展卡尔曼滤波器(extended Kalman filter,EKF)进行状态估计。在IEEE 33节点和IEEE 118节点标准配电网上进行仿真测试,结果表明所提方法在估计精度和鲁棒性等方面具有一定优势,可为主动配电网FASE提供参考。展开更多
降维对于数据的可视化和预处理具有重要意义,主成分分析作为最常用的无监督降维算法之一,在实际应用中面临着对噪声和离群点敏感的问题。为了解决这个问题,研究者们提出了多种鲁棒主成分分析算法,通过减小整体样本的重构误差来减小离群...降维对于数据的可视化和预处理具有重要意义,主成分分析作为最常用的无监督降维算法之一,在实际应用中面临着对噪声和离群点敏感的问题。为了解决这个问题,研究者们提出了多种鲁棒主成分分析算法,通过减小整体样本的重构误差来减小离群点的影响。然而,这些算法忽略了数据的固有局部结构,导致数据的本质结构信息丢失,从而影响了对噪声和离群点的准确辨识和移除,进而影响了后续算法的性能。因此,该文提出了基于Soft均值滤波的鲁棒主成分分析(Robust Principal Component Analysis Based on Soft Mean Filtering,RPCA-SMF)算法。RPCA-SMF采用Soft均值滤波的思想,通过两步走的形式,不仅在模型学习前对噪声处理,同时在模型学习后也引入了噪声处理机制。具体而言,RPCA-SMF算法首先引入了均值滤波的相关思想,通过对比样本与其局部近邻这两者和局部均值的偏差对样本进行Soft加权,从而对噪声进行判定。随后,通过第一步获取的关于噪声的“判别知识”处理噪声信息。由于均值滤波能有效保留数据的整体轮廓信息,因此对于被识别为噪声的样本,RPCA-SMF算法强调保留其低频整体轮廓信息,而非高频的噪声信息。这样能够有效地保留数据中的有用信息,提高对数据整体结构特征的保留能力,使得算法具有较强的鲁棒性和较好的泛化性。展开更多
鲁棒主成分分析(robust principal component analysis,RPCA)是视频显著性检测中的常用算法,但其参数需要手动调试且针对不同视频需重新选择,导致效率较低。为解决这一问题,提出一种可学习鲁棒主成分分析深度网络(LNRPCA)模型,以减少对...鲁棒主成分分析(robust principal component analysis,RPCA)是视频显著性检测中的常用算法,但其参数需要手动调试且针对不同视频需重新选择,导致效率较低。为解决这一问题,提出一种可学习鲁棒主成分分析深度网络(LNRPCA)模型,以减少对参数的依赖。通过设计参数化的阈值函数和展开主成分追踪算法构建深度网络框架,采用反向传播和损失函数最小化实现参数的端到端学习。在多个视频数据集上进行检测实验,结果表明:LNRPCA在视觉效果和F-measure值(平均为0.7895)方面均优于对比算法,相比TNN算法提高9.89%;在计算时间上表现出更高的效率和优越性。展开更多
图像融合中,多数边缘保持滤波器在优化过程中会损坏细节和纹理信息,并且噪声也会严重影响融合结果,使得融合结果之间出现边界模糊和细节丢失问题。提出了一种基于RPCA(Robus principal compo-nent association)算法的红外光和可见光图...图像融合中,多数边缘保持滤波器在优化过程中会损坏细节和纹理信息,并且噪声也会严重影响融合结果,使得融合结果之间出现边界模糊和细节丢失问题。提出了一种基于RPCA(Robus principal compo-nent association)算法的红外光和可见光图像融合方法,可有效提高图象清晰度和视觉信息的保真度。首先,利用鲁棒主成分分析(RPCA)分解源图像为低秩部分和稀疏部分,并运用相对全变分和平均能量法对两者进行处理,最后通过NSCT逆变换获得融合图像。实验结果表明,与其他方法相比,该方法所得融合图像的平均梯度、空间频率、边缘强度、互信息量均有提升,提升量级分别为10.6%到72.6%、15%到60.2%、9.7%到69.6%,22.7%到229.7%。展开更多
文摘为了解决张量鲁棒主成分分析(tensor robust principal component analysis,TRPCA)还原低秩结构时同等收缩奇异值造成的信息提取偏差问题,本文考虑区别对待奇异值,使用非凸加权张量Schatten-p范数(0<p<1)分析张量数据,可减少对奇异值的惩罚。为解决数据受损严重难以恢复的问题,提出低秩预分离的方法实现近似低秩部分和近似稀疏部分的预先分离;为增强高阶张量之间相关性同时降低数据对特定噪声的敏感性,提出随机抖动正则器的机制对预分离后成分分别选取随机区域优化,利用噪声信息的随机性来正则化算法得以约束模型的复杂度;最后使用不同类型的图像数据集,包括彩色图像、核磁共振图像、高光谱及多光谱图像和灰度视频,进行高维数据恢复实验。结果表明该方法在图像恢复性能上明显优于其他TRPCA方法,并且在数据受损严重时同样具有优势,有效提取主成分信息的同时减小数据对特定噪声的依赖,具有较强的鲁棒性和适应性,可为TRPCA方法在图像恢复领域中提供参考。
文摘为了解决高比例分布式电源(distributed generation,DG)大规模并网后实时量测数目缺失、传统预测辅助状态估计方法(forecasting-aided state estimation,FASE)估计精度有限等问题,提出了基于改进Crossformer伪量测构建的主动配电网FASE方法。首先,基于最大信息系数法(maximal information coefficient,MIC)筛选出高相关性的输入特征,提高预测模型的精度;然后,通过全变差正则化技术(total variation regularized,TV)优化鲁棒主成分分析法(robust principal component analysis,RPCA),构建TRPCA层,并将其嵌入到Crossformer中,以填补Crossformer无法有效处理非高斯噪声的空白;最后,利用改进的预测模型进行超短期负荷预测,经潮流计算得到节点伪量测,在量测不足情况下补全缺失数据,并结合扩展卡尔曼滤波器(extended Kalman filter,EKF)进行状态估计。在IEEE 33节点和IEEE 118节点标准配电网上进行仿真测试,结果表明所提方法在估计精度和鲁棒性等方面具有一定优势,可为主动配电网FASE提供参考。
文摘降维对于数据的可视化和预处理具有重要意义,主成分分析作为最常用的无监督降维算法之一,在实际应用中面临着对噪声和离群点敏感的问题。为了解决这个问题,研究者们提出了多种鲁棒主成分分析算法,通过减小整体样本的重构误差来减小离群点的影响。然而,这些算法忽略了数据的固有局部结构,导致数据的本质结构信息丢失,从而影响了对噪声和离群点的准确辨识和移除,进而影响了后续算法的性能。因此,该文提出了基于Soft均值滤波的鲁棒主成分分析(Robust Principal Component Analysis Based on Soft Mean Filtering,RPCA-SMF)算法。RPCA-SMF采用Soft均值滤波的思想,通过两步走的形式,不仅在模型学习前对噪声处理,同时在模型学习后也引入了噪声处理机制。具体而言,RPCA-SMF算法首先引入了均值滤波的相关思想,通过对比样本与其局部近邻这两者和局部均值的偏差对样本进行Soft加权,从而对噪声进行判定。随后,通过第一步获取的关于噪声的“判别知识”处理噪声信息。由于均值滤波能有效保留数据的整体轮廓信息,因此对于被识别为噪声的样本,RPCA-SMF算法强调保留其低频整体轮廓信息,而非高频的噪声信息。这样能够有效地保留数据中的有用信息,提高对数据整体结构特征的保留能力,使得算法具有较强的鲁棒性和较好的泛化性。
文摘鲁棒主成分分析(robust principal component analysis,RPCA)是视频显著性检测中的常用算法,但其参数需要手动调试且针对不同视频需重新选择,导致效率较低。为解决这一问题,提出一种可学习鲁棒主成分分析深度网络(LNRPCA)模型,以减少对参数的依赖。通过设计参数化的阈值函数和展开主成分追踪算法构建深度网络框架,采用反向传播和损失函数最小化实现参数的端到端学习。在多个视频数据集上进行检测实验,结果表明:LNRPCA在视觉效果和F-measure值(平均为0.7895)方面均优于对比算法,相比TNN算法提高9.89%;在计算时间上表现出更高的效率和优越性。
文摘运动目标传统检测方法只考虑图像的亮度或纹理等某一种特性,受特异值影响较大,对噪声比较敏感,鲁棒性也不够好,而且背景恢复精度不高。针对以上局限性,提出一种融合结构相似度(structural similarity,SSIM)全参考模型和鲁棒主成分分析(robust principal component analysis,RPCA)的运动目标检测方法。此方法综合考虑图像的亮度、对比度和结构三种特性,不采用传统的背景减除法,而是把图像像素点的结构相似度作为度量来实现运动对象与背景的分离。实验结果表明,此方法准确率可达0.95,且F度量较传统运动目标检测算法平均提升0.15,总体上比传统方法更具优势。
文摘图像融合中,多数边缘保持滤波器在优化过程中会损坏细节和纹理信息,并且噪声也会严重影响融合结果,使得融合结果之间出现边界模糊和细节丢失问题。提出了一种基于RPCA(Robus principal compo-nent association)算法的红外光和可见光图像融合方法,可有效提高图象清晰度和视觉信息的保真度。首先,利用鲁棒主成分分析(RPCA)分解源图像为低秩部分和稀疏部分,并运用相对全变分和平均能量法对两者进行处理,最后通过NSCT逆变换获得融合图像。实验结果表明,与其他方法相比,该方法所得融合图像的平均梯度、空间频率、边缘强度、互信息量均有提升,提升量级分别为10.6%到72.6%、15%到60.2%、9.7%到69.6%,22.7%到229.7%。