采用自制线管式介质阻挡放电反应器,针对非热等离子体协同Mn-Ce/La/γ-Al_2O_3催化剂对低浓度甲苯的去除开展研究。研究中制备了Mn/γ-Al_2O_3、Mn-Ce/γ-Al_2O_3、Mn-La/γ-Al_2O_3催化剂,从甲苯去除率、产物O_3生成、CO_x选择性及其...采用自制线管式介质阻挡放电反应器,针对非热等离子体协同Mn-Ce/La/γ-Al_2O_3催化剂对低浓度甲苯的去除开展研究。研究中制备了Mn/γ-Al_2O_3、Mn-Ce/γ-Al_2O_3、Mn-La/γ-Al_2O_3催化剂,从甲苯去除率、产物O_3生成、CO_x选择性及其他副产物生成情况考察比较了空管放电、协同催化剂放电时催化降解甲苯性能,并对催化剂进行了BET、SEM、H2-TPR和ICP-OES表征研究。结果表明:稀土助剂的加入有助于提高甲苯去除率及降低程度,且La催化性能优于Ce.,当外加电压22 k V、气量6 L·min-1、甲苯初始浓度600 mg·m-3时,Mn-La/γ-Al_2O_3催化剂对甲苯去除率达到72.74%。H2-TPR结果表明,稀土助剂的加入提高了催化剂低温活性及储氧能力,添加La的效果优于Ce。催化剂有助于抑制副产物O_3生成,提高CO_2和COx选择性。展开更多
Nano-particle Pd/?-Al2O3 monometallic and Pd-Cu/?-Al2O3 bimetall ic catalysts were prepared by solvated metal atom impregnation (SMAI) method. Th e results of XRD measurement indicated that Pd- Cu alloy was formed in ...Nano-particle Pd/?-Al2O3 monometallic and Pd-Cu/?-Al2O3 bimetall ic catalysts were prepared by solvated metal atom impregnation (SMAI) method. Th e results of XRD measurement indicated that Pd- Cu alloy was formed in the bim etallic catalysts and the crystalline particle size of the alloy increased as Cu contents increased with average diameters < 6.0nm for all the samples. XPS and Auger spectra showed that Pd was in zero- valent state, Cu existed mainly in z ero- valent state and partially in monovalent state Cu+. The Pd/?-Al2O3 and Pd-Cu/?-Al2O3 catalysts exhibited higher activity for CO oxidation at low temperature. The activity of Pd-Cu/?-Al2O3 bimetallic catalyst was hig her than that of Pd/?-Al2O3 monometallic catalyst. The Pd-Cu/?-Al2O3 c atalyst with Pd/Cu atomic ratio of 1∶1 showed the highest activity.展开更多
The bimetallic catalyst Ru-Pt/ γ -Al 2O 3 was prepared by impregnating H 2PtCl 6 and RuCl 3 aqueous solution in the presence of PVP(40 000). Its catalytic performance in selective hydrogenation of \{ p -chloronitrobe...The bimetallic catalyst Ru-Pt/ γ -Al 2O 3 was prepared by impregnating H 2PtCl 6 and RuCl 3 aqueous solution in the presence of PVP(40 000). Its catalytic performance in selective hydrogenation of \{ p -chloronitrobenzene\}( p -CNB) was studied. The results indicate that the activity of Ru-Pt/ γ -Al 2O 3[\{ n (ruthenium)\}∶ n (platinum)=4∶1] is much higher than that of Ru/ γ -Al 2O 3,while the amount of dehalogenation product(aniline) and other by-products are much fewer than that by using Pt/ γ -Al 2O 3 as the catalyst. There is synergistic effect of ruthenium and platinum in bimetallic catalyst for selective hydrogenation of p -CNB. Under the reaction conditions t =50 ℃, p H 2 = 1.0 MPa, reaction time 60 min,\{ n (substrate)∶\} n (total amount of metal content)=1000∶1,the conversion of p -CNB and the selectivity to p -chloroaniline( p -CNA) by using Ru-Pt/ γ -Al 2O 3 as the catalyst are 48.2% and 85.9%,respectively. The effect of other metal cations(introduced to the reaction system with the corresponding metal chloride solution) on the reaction was investigated. It was found that catalytic performance of Ru-Pt/ γ -Al 2O 3 could be greatly improved by modfication of some metal cations. When Co 2+ and Ni 2+ were used as modifiers for the catalyst Ru-Pt/ γ -Al 2O 3 under above mentioned reaction conditions,the conversions of p -CNB increase to 74.5% and 87.8%,as well as the selectivities of p -CAN increase to 98.9% and 99.4%,respectively. Fe 3+ and Sn 4+ were the best modifiers for Ru-Pt/ γ -Al 2O 3 under the same reaction conditions. The conversions of p -CNB and the selectivities of p -CAN can reach 100% and >99.0%,respectively. However,the catalysts can be poisoned by Zn 2+ and Sn 2+ .展开更多
文摘采用自制线管式介质阻挡放电反应器,针对非热等离子体协同Mn-Ce/La/γ-Al_2O_3催化剂对低浓度甲苯的去除开展研究。研究中制备了Mn/γ-Al_2O_3、Mn-Ce/γ-Al_2O_3、Mn-La/γ-Al_2O_3催化剂,从甲苯去除率、产物O_3生成、CO_x选择性及其他副产物生成情况考察比较了空管放电、协同催化剂放电时催化降解甲苯性能,并对催化剂进行了BET、SEM、H2-TPR和ICP-OES表征研究。结果表明:稀土助剂的加入有助于提高甲苯去除率及降低程度,且La催化性能优于Ce.,当外加电压22 k V、气量6 L·min-1、甲苯初始浓度600 mg·m-3时,Mn-La/γ-Al_2O_3催化剂对甲苯去除率达到72.74%。H2-TPR结果表明,稀土助剂的加入提高了催化剂低温活性及储氧能力,添加La的效果优于Ce。催化剂有助于抑制副产物O_3生成,提高CO_2和COx选择性。
文摘Nano-particle Pd/?-Al2O3 monometallic and Pd-Cu/?-Al2O3 bimetall ic catalysts were prepared by solvated metal atom impregnation (SMAI) method. Th e results of XRD measurement indicated that Pd- Cu alloy was formed in the bim etallic catalysts and the crystalline particle size of the alloy increased as Cu contents increased with average diameters < 6.0nm for all the samples. XPS and Auger spectra showed that Pd was in zero- valent state, Cu existed mainly in z ero- valent state and partially in monovalent state Cu+. The Pd/?-Al2O3 and Pd-Cu/?-Al2O3 catalysts exhibited higher activity for CO oxidation at low temperature. The activity of Pd-Cu/?-Al2O3 bimetallic catalyst was hig her than that of Pd/?-Al2O3 monometallic catalyst. The Pd-Cu/?-Al2O3 c atalyst with Pd/Cu atomic ratio of 1∶1 showed the highest activity.
文摘The bimetallic catalyst Ru-Pt/ γ -Al 2O 3 was prepared by impregnating H 2PtCl 6 and RuCl 3 aqueous solution in the presence of PVP(40 000). Its catalytic performance in selective hydrogenation of \{ p -chloronitrobenzene\}( p -CNB) was studied. The results indicate that the activity of Ru-Pt/ γ -Al 2O 3[\{ n (ruthenium)\}∶ n (platinum)=4∶1] is much higher than that of Ru/ γ -Al 2O 3,while the amount of dehalogenation product(aniline) and other by-products are much fewer than that by using Pt/ γ -Al 2O 3 as the catalyst. There is synergistic effect of ruthenium and platinum in bimetallic catalyst for selective hydrogenation of p -CNB. Under the reaction conditions t =50 ℃, p H 2 = 1.0 MPa, reaction time 60 min,\{ n (substrate)∶\} n (total amount of metal content)=1000∶1,the conversion of p -CNB and the selectivity to p -chloroaniline( p -CNA) by using Ru-Pt/ γ -Al 2O 3 as the catalyst are 48.2% and 85.9%,respectively. The effect of other metal cations(introduced to the reaction system with the corresponding metal chloride solution) on the reaction was investigated. It was found that catalytic performance of Ru-Pt/ γ -Al 2O 3 could be greatly improved by modfication of some metal cations. When Co 2+ and Ni 2+ were used as modifiers for the catalyst Ru-Pt/ γ -Al 2O 3 under above mentioned reaction conditions,the conversions of p -CNB increase to 74.5% and 87.8%,as well as the selectivities of p -CAN increase to 98.9% and 99.4%,respectively. Fe 3+ and Sn 4+ were the best modifiers for Ru-Pt/ γ -Al 2O 3 under the same reaction conditions. The conversions of p -CNB and the selectivities of p -CAN can reach 100% and >99.0%,respectively. However,the catalysts can be poisoned by Zn 2+ and Sn 2+ .