期刊文献+
共找到2,665篇文章
< 1 2 134 >
每页显示 20 50 100
A New Effective Method for Ship Target Recognition
1
作者 Guo Guirong, Yu Wenxian and Hu Bufa(Electrical Engineering Lab, Changsha Institute of Technology, Hunan) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1990年第1期55-63,共9页
In this paper, the problem of reliable automatic target recognition from incoherent radar returns is discussed and a new method for ship target recognition is proposed. Based on this method, an experimental system for... In this paper, the problem of reliable automatic target recognition from incoherent radar returns is discussed and a new method for ship target recognition is proposed. Based on this method, an experimental system for ship target recognition is implemented. The results obtained from the theoretical and experimental study indicate that a high reliability of recognition can be achieved by using the designed recognition system. An average success rate of more than 90% is reached for 8 classes of ships. 展开更多
关键词 target recognition recognition system feature extraction.
在线阅读 下载PDF
Summed volume region selection based three-dimensional automatic target recognition for airborne LIDAR 被引量:2
2
作者 Qi-shu Qian Yi-hua Hu +2 位作者 Nan-xiang Zhao Min-le Li Fu-cai Shao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第3期535-542,共8页
Airborne LIDAR can flexibly obtain point cloud data with three-dimensional structural information,which can improve its effectiveness of automatic target recognition in the complex environment.Compared with 2D informa... Airborne LIDAR can flexibly obtain point cloud data with three-dimensional structural information,which can improve its effectiveness of automatic target recognition in the complex environment.Compared with 2D information,3D information performs better in separating objects and background.However,an aircraft platform can have a negative influence on LIDAR obtained data because of various flight attitudes,flight heights and atmospheric disturbances.A structure of global feature based 3D automatic target recognition method for airborne LIDAR is proposed,which is composed of offline phase and online phase.The performance of four global feature descriptors is compared.Considering the summed volume region(SVR) discrepancy in real objects,SVR selection is added into the pre-processing operations to eliminate mismatching clusters compared with the interested target.Highly reliable simulated data are obtained under various sensor’s altitudes,detection distances and atmospheric disturbances.The final experiments results show that the added step increases the recognition rate by above 2.4% and decreases the execution time by about 33%. 展开更多
关键词 3D automatic target recognition Point cloud LIDAR AIRBORNE Global feature descriptor
在线阅读 下载PDF
HRRP target recognition based on kernel joint discriminant analysis 被引量:9
3
作者 LIU Wenbo YUAN Jiawen +1 位作者 ZHANG Gong SHEN Qian 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第4期703-708,共6页
With the improvement of radar resolution,the dimension of the high resolution range profile(HRRP)has increased.In order to solve the small sample problem caused by the increase of HRRP dimension,an algorithm based on ... With the improvement of radar resolution,the dimension of the high resolution range profile(HRRP)has increased.In order to solve the small sample problem caused by the increase of HRRP dimension,an algorithm based on kernel joint discriminant analysis(KJDA)is proposed.Compared with the traditional feature extraction methods,KJDA possesses stronger discriminative ability in the kernel feature space.K-nearest neighbor(KNN)and kernel support vector machine(KSVM)are applied as feature classifiers to verify the classification effect.Experimental results on the measured aircraft datasets show that KJDA can reduce the dimensionality,and improve target recognition performance. 展开更多
关键词 high RESOLUTION range profile(HRRP) target recognition small SAMPLE problem feature extraction DIMENSION reduction
在线阅读 下载PDF
Adaptive target and jamming recognition for the pulse doppler radar fuze based on a time-frequency joint feature and an online-updated naive bayesian classifier with minimal risk 被引量:9
4
作者 Jian Dai Xin-hong Hao +2 位作者 Ze Li Ping Li Xiao-peng Yan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第3期457-466,共10页
This paper considers the problem of target and jamming recognition for the pulse Doppler radar fuze(PDRF).To solve the problem,the matched filter outputs of the PDRF under the action of target and jamming are analyzed... This paper considers the problem of target and jamming recognition for the pulse Doppler radar fuze(PDRF).To solve the problem,the matched filter outputs of the PDRF under the action of target and jamming are analyzed.Then,the frequency entropy and peak-to-peak ratio are extracted from the matched filter output of the PDRF,and the time-frequency joint feature is constructed.Based on the time-frequency joint feature,the naive Bayesian classifier(NBC)with minimal risk is established for target and jamming recognition.To improve the adaptability of the proposed method in complex environments,an online update process that adaptively modifies the classifier in the duration of the work of the PDRF is proposed.The experiments show that the PDRF can maintain high recognition accuracy when the signal-to-noise ratio(SNR)decreases and the jamming-to-signal ratio(JSR)increases.Moreover,the applicable analysis shows that he ONBCMR method has low computational complexity and can fully meet the real-time requirements of PDRF. 展开更多
关键词 Pulse Doppler radar fuze(PDRF) target and jamming recognition Time-frequency joint feature Online-update naive Bayesian classifier minimal risk(ONBCMR)
在线阅读 下载PDF
Ship recognition based on HRRP via multi-scale sparse preserving method
5
作者 YANG Xueling ZHANG Gong SONG Hu 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期599-608,共10页
In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) ba... In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) based on the maximum margin criterion(MMC) is proposed for recognizing the class of ship targets utilizing the high-resolution range profile(HRRP). Multi-scale fusion is introduced to capture the local and detailed information in small-scale features, and the global and contour information in large-scale features, offering help to extract the edge information from sea clutter and further improving the target recognition accuracy. The proposed method can maximally preserve the multi-scale fusion sparse of data and maximize the class separability in the reduced dimensionality by reproducing kernel Hilbert space. Experimental results on the measured radar data show that the proposed method can effectively extract the features of ship target from sea clutter, further reduce the feature dimensionality, and improve target recognition performance. 展开更多
关键词 ship target recognition high-resolution range profile(HRRP) multi-scale fusion kernel sparse preserving projection(MSFKSPP) feature extraction dimensionality reduction
在线阅读 下载PDF
Method of neural network modulation recognition based on clustering and Polak-Ribiere algorithm 被引量:4
6
作者 Faquan Yang Zan Li +2 位作者 Hongyan Li Haiyan Huang Zhongxian Pan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第5期742-747,共6页
To improve the recognition rate of signal modulation recognition methods based on the clustering algorithm under the low SNR, a modulation recognition method is proposed. The characteristic parameter of the signal is ... To improve the recognition rate of signal modulation recognition methods based on the clustering algorithm under the low SNR, a modulation recognition method is proposed. The characteristic parameter of the signal is extracted by using a clustering algorithm, the neural network is trained by using the algorithm of variable gradient correction (Polak-Ribiere) so as to enhance the rate of convergence, improve the performance of recognition under the low SNR and realize modulation recognition of the signal based on the modulation system of the constellation diagram. Simulation results show that the recognition rate based on this algorithm is enhanced over 30% compared with the methods that adopt clustering algorithm or neural network based on the back propagation algorithm alone under the low SNR. The recognition rate can reach 90% when the SNR is 4 dB, and the method is easy to be achieved so that it has a broad application prospect in the modulating recognition. 展开更多
关键词 clustering algorithm feature extraction algorithm of Polak-Ribiere neural network (NN) modulation recognition.
在线阅读 下载PDF
A novel feature extraction method for ship-radiated noise 被引量:7
7
作者 Hong Yang Lu-lu Li +1 位作者 Guo-hui Li Qian-ru Guan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第4期604-617,共14页
To improve the feature extraction of ship-radiated noise in a complex ocean environment,a novel feature extraction method for ship-radiated noise based on complete ensemble empirical mode decomposition with adaptive s... To improve the feature extraction of ship-radiated noise in a complex ocean environment,a novel feature extraction method for ship-radiated noise based on complete ensemble empirical mode decomposition with adaptive selective noise(CEEMDASN) and refined composite multiscale fluctuation-based dispersion entropy(RCMFDE) is proposed.CEEMDASN is proposed in this paper which takes into account the high frequency intermittent components when decomposing the signal.In addition,RCMFDE is also proposed in this paper which refines the preprocessing process of the original signal based on composite multi-scale theory.Firstly,the original signal is decomposed into several intrinsic mode functions(IMFs)by CEEMDASN.Energy distribution ratio(EDR) and average energy distribution ratio(AEDR) of all IMF components are calculated.Then,the IMF with the minimum difference between EDR and AEDR(MEDR)is selected as characteristic IMF.The RCMFDE of characteristic IMF is estimated as the feature vectors of ship-radiated noise.Finally,these feature vectors are sent to self-organizing map(SOM) for classifying and identifying.The proposed method is applied to the feature extraction of ship-radiated noise.The result shows its effectiveness and universality. 展开更多
关键词 Complete ensemble empirical mode decomposition with adaptive noise Ship-radiated noise feature extraction Classification and recognition
在线阅读 下载PDF
Cobalt crust recognition based on kernel Fisher discriminant analysis and genetic algorithm in reverberation environment 被引量:2
8
作者 ZHAO Hai-ming ZHAO Xiang +1 位作者 HAN Feng-lin WANG Yan-li 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第1期179-193,共15页
Recognition of substrates in cobalt crust mining areas can improve mining efficiency.Aiming at the problem of unsatisfactory performance of using single feature to recognize the seabed material of the cobalt crust min... Recognition of substrates in cobalt crust mining areas can improve mining efficiency.Aiming at the problem of unsatisfactory performance of using single feature to recognize the seabed material of the cobalt crust mining area,a method based on multiple-feature sets is proposed.Features of the target echoes are extracted by linear prediction method and wavelet analysis methods,and the linear prediction coefficient and linear prediction cepstrum coefficient are also extracted.Meanwhile,the characteristic matrices of modulus maxima,sub-band energy and multi-resolution singular spectrum entropy are obtained,respectively.The resulting features are subsequently compressed by kernel Fisher discriminant analysis(KFDA),the output features are selected using genetic algorithm(GA)to obtain optimal feature subsets,and recognition results of classifier are chosen as genetic fitness function.The advantages of this method are that it can describe the signal features more comprehensively and select the favorable features and remove the redundant features to the greatest extent.The experimental results show the better performance of the proposed method in comparison with only using KFDA or GA. 展开更多
关键词 feature extraction kernel Fisher discriminant analysis(KFDA) genetic algorithm multiple feature sets cobalt crust recognition
在线阅读 下载PDF
Research on Rice Leaf Disease Recognition Based on BP Neural Network 被引量:1
9
作者 Shen Wei-zheng Guan Ying +1 位作者 Wang Yan Jing Dong-jun 《Journal of Northeast Agricultural University(English Edition)》 CAS 2019年第3期75-86,共12页
To solve the problem of mistake recognition among rice diseases, automatic recognition methods based on BP(back propagation) neural network were studied in this paper for blast, sheath blight and bacterial blight. Cho... To solve the problem of mistake recognition among rice diseases, automatic recognition methods based on BP(back propagation) neural network were studied in this paper for blast, sheath blight and bacterial blight. Chose mobile terminal equipment as image collecting tool and built database of rice leaf images with diseases under threshold segmentation method. Characteristic parameters were extracted from color, shape and texture. Furthermore, parameters were optimized using the single-factor variance analysis and the effects of BP neural network model. The optimization would simplify BP neural network model without reducing the recognition accuracy. The finally model could successfully recognize 98%, 96% and 98% of rice blast, sheath blight and white leaf blight, respectively. 展开更多
关键词 rice LEAF disease recognition feature extraction optimization o f CHARACTERISTIC paramete BP NEURAL network
在线阅读 下载PDF
Pattern recognitionbased method for radar antideceptive jamming 被引量:1
10
作者 Ma Xiaoyan Qin Jiangmin Li Jianxun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第4期802-805,共4页
In order to make the effective ECCM to the deceptive jamming, especially the angle deceptive jamming, this paper establishes a signal-processing model for anti-deceptive jamming firstly, in which two feature-extractin... In order to make the effective ECCM to the deceptive jamming, especially the angle deceptive jamming, this paper establishes a signal-processing model for anti-deceptive jamming firstly, in which two feature-extracting algorithms, i.e. the statistical algorithm and the neural network (NN) algorithm are presented, then uses the RBF NN as the classitier in the processing model. Finally the two algorithms are validated and compared through some simulations. 展开更多
关键词 angle deceptive jamming ANTI-JAMMING pattern recognition feature extraction neural network.
在线阅读 下载PDF
Recognition of newspaper printed in Gurumukhi script
11
作者 Rupinder Pal Kaur Manish Kumar Jindal Munish Kumar 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第9期2495-2503,共9页
In this work,a system for recognition of newspaper printed in Gurumukhi script is presented.Four feature extraction techniques,namely,zoning features,diagonal features,parabola curve fitting based features,and power c... In this work,a system for recognition of newspaper printed in Gurumukhi script is presented.Four feature extraction techniques,namely,zoning features,diagonal features,parabola curve fitting based features,and power curve fitting based features are considered for extracting the statistical properties of the characters printed in the newspaper.Different combinations of these features are also applied to improve the recognition accuracy.For recognition,four classification techniques,namely,k-NN,linear-SVM,decision tree,and random forest are used.A database for the experiments is collected from three major Gurumukhi script newspapers which are Ajit,Jagbani and Punjabi Tribune.Using 5-fold cross validation and random forest classifier,a recognition accuracy of 96.19%with a combination of zoning features,diagonal features and parabola curve fitting based features has been reported.A recognition accuracy of 95.21%with a partitioning strategy of data set(70%data as training data and remaining 30%data as testing data)has been achieved. 展开更多
关键词 newspaper recognition feature extraction CLASSIFICATION Gurumukhi script random forest
在线阅读 下载PDF
Gait recognition using GEI and curvelet
12
作者 Jing Luo Chunyuan Zi +1 位作者 Jianliang Zhang Yue Liu 《光电工程》 CAS CSCD 北大核心 2017年第4期400-404,468,共6页
Gait energy image(GEI)is composed of static body silhouette and dynamic frequency information of human gait.To achieve fast and efficient gait recognition,combined with the accurate description of the information of d... Gait energy image(GEI)is composed of static body silhouette and dynamic frequency information of human gait.To achieve fast and efficient gait recognition,combined with the accurate description of the information of details and directions in image by Curvelet transform,a gait recognition method using GEI and Curvelet(GEIC)is presented.Firstly,to gain the gait energy images,the gait cycle is selected according to the aspect ratio.Secondly,Curvelet energy coefficients of the GEI,which are used as gait feature vector,are extracted by Curvelet transform in different scales and different directions.Finally,the gait recognition is accomplished by the K nearest neighbor(KNN)classifier.The experimental results demonstrate that GEIC performs well on CASIA(B)database,with the average accuracy of 86.83%.Compared with GEI+KPCA,GEI+W(2D)2PCA and GEI+(2D)~2PCA,the algorithm GEIC achieves better robustness in the condition of the person wearing or packaging. 展开更多
关键词 动态频率 步态识别方法 发展现状 步态特征向量
在线阅读 下载PDF
基于DTW算法的sEMG手势识别控制系统设计 被引量:2
13
作者 韩团军 雷栋元 +1 位作者 黄朝军 卢超 《现代电子技术》 北大核心 2025年第2期131-136,共6页
人体在运动过程中会产生微弱的生物电信号,其中蕴含着大量的控制信息。为了使用生物电信号中的信息控制机械臂动作,提出一种基于DTW算法的sEMG手势识别控制系统,利用该系统对采集的原始信号进行滤波和放大。为了确定有效的sEMG,采用移... 人体在运动过程中会产生微弱的生物电信号,其中蕴含着大量的控制信息。为了使用生物电信号中的信息控制机械臂动作,提出一种基于DTW算法的sEMG手势识别控制系统,利用该系统对采集的原始信号进行滤波和放大。为了确定有效的sEMG,采用移动平均法对处理信号进行划分。使用平均绝对值从数据片段中提取有效段数据,应用DTW算法将3路表面肌电信号融合,计算样本与模型之间的相似度,实现手势识别;再将识别后的信号通过无线模块发送到控制指令,以控制机械臂的动作;最后,采用提出的算法并结合6种类型的手势分类模型创建最佳特征模型。实验测试结果表明,使用动态时间规整(DTW)算法进行手势识别的平均准确率为93.752%,6种手势的平均模型匹配率达到92%,实现了肌电信号对机械臂的精确控制。由此证明所提方法的手势识别比传统的阈值控制开关更准确。 展开更多
关键词 手势识别 DTW算法 表面肌电图(sEMG) 特征提取 机械臂 手势检测
在线阅读 下载PDF
基于改进EfficientNet的煤矸音频分类方法 被引量:1
14
作者 宋庆军 焦守悦 +2 位作者 姜海燕 宋庆辉 郝文超 《工矿自动化》 北大核心 2025年第1期138-144,共7页
针对煤矸音频特征提取过程中设备运行噪声干扰严重及单一提取方法易导致信息丢失的问题,提出了一种基于改进EfficientNet的煤矸音频分类方法。采用基于Mel频谱和Gammatone倒谱系数的特征提取方法,有效捕捉矸石声音中的低频信息和细节特... 针对煤矸音频特征提取过程中设备运行噪声干扰严重及单一提取方法易导致信息丢失的问题,提出了一种基于改进EfficientNet的煤矸音频分类方法。采用基于Mel频谱和Gammatone倒谱系数的特征提取方法,有效捕捉矸石声音中的低频信息和细节特征。选择EfficientNet-B0作为骨干网络,并对其进行以下改进:将原有的多尺度通道注意力模块换成卷积块注意力模块,得到卷积注意力特征融合(CAFF)模块,通过网络自学习为不同空间位置的特征分配不同的权重信息,生成新的有效特征;在原有的MBConv模块中并行嵌入频域通道注意力(FCA)模块,加强特征图的表达能力,从而提高整个网络的性能。实验结果表明:引入CAFF模块后,模型准确率提升了0.61%,F1得分提升了0.52%,且模型收敛更快,说明CAFF模块有效提升了模型对频谱特征的捕捉能力;引入FCA模块后,准确率提升了0.45%,F1得分提升了0.62%,说明模块的叠加可以进一步提高模型的泛化能力和处理复杂特征的能力;改进EfficientNe模型的准确率为91.90%,标准差为0.108,显著优于同类对比音频分类模型。 展开更多
关键词 综放开采 煤矸识别 音频特征提取 EfficientNet Mel频谱特征 Gammatone倒谱系数 注意力机制
在线阅读 下载PDF
基于改进YOLOv8算法的在线听课行为识别模型研究 被引量:1
15
作者 李猛坤 袁晨 +3 位作者 王琪 赵冲 陈景轩 刘立峰 《计算机工程》 北大核心 2025年第1期287-294,共8页
目前目标检测技术日趋成熟,但是针对在线听课行为的识别仍存在挑战。针对在线课堂人为监管力度不足、目标检测模型复杂度较高所导致的在线课堂行为识别不精准、模型计算量较高等问题,提出一种基于改进的YOLOv8在线听课行为检测与识别方... 目前目标检测技术日趋成熟,但是针对在线听课行为的识别仍存在挑战。针对在线课堂人为监管力度不足、目标检测模型复杂度较高所导致的在线课堂行为识别不精准、模型计算量较高等问题,提出一种基于改进的YOLOv8在线听课行为检测与识别方法。首先在YOLOv8n的基础上添加BiFPN双向特征金字塔网络来进行特征融合,以增加特征提取的能力,提高模型识别准确度;其次在Head端采用C3Ghost模块替代C2f模块,以大幅减少模型计算量。实验结果表明,提出的YOLOv8n-BiFPN-C3Ghost模型在线上听课行为数据集上的mAP@0.5和mAP@0.5∶0.95指标分别为98.6%和92.6%,相比其他课堂行为识别模型在精度上最高提升了4.2%和5.7%,计算量为6.6 GFLOPS,比原模型降低了19.5%。YOLOv8n-BiFPN-C3Ghost模型能以更低的运算成本精确地实现在线听课行为的检测和识别,可以实现对学生在线课堂学习情况的动态、科学识别。 展开更多
关键词 目标检测 在线课堂 听课行为识别 性能优化 特征融合
在线阅读 下载PDF
基于改进TCNN算法的脑电动态连续情绪识别研究
16
作者 揭丽琳 刘勇 +3 位作者 王铭勋 邹杨萌 徐亦璐 鲁宇明 《电子学报》 北大核心 2025年第4期1347-1360,共14页
在现实生活中,人类情绪具有动态和多样化的特征,受外部环境、社交互动以及个体内在状态的共同影响.针对脑电情绪识别研究通常局限于实验室的静态场景,未能充分考虑情绪的动态连续性的问题,本文提出了一种基于改进TCNN算法的脑电动态连... 在现实生活中,人类情绪具有动态和多样化的特征,受外部环境、社交互动以及个体内在状态的共同影响.针对脑电情绪识别研究通常局限于实验室的静态场景,未能充分考虑情绪的动态连续性的问题,本文提出了一种基于改进TCNN算法的脑电动态连续情绪识别方法 .首先,设计了适用于动态情境的脑电数据采集范式,使用64通道的脑电设备收集24名受试者在经历开心至平静、平静至开心、平静至悲伤、悲伤至平静、平静至紧张和紧张至平静六种动态连续情绪转变时的脑电信号,并进行了动态连续情绪标签的标注.其次,对现有的TCNN算法进行了改进,构建了一种双流网络模型进行动态连续情绪识别.该模型通过短期流利用时序卷积模块捕捉局部时间序列特征,而长期流则通过Transformer模块捕捉全局时间序列特征.最后,对提取的脑电特征进行特征层融合,以获得更加精准的动态连续情绪识别结果.结果表明:在采集的动态连续情绪数据集上,本文方法在六种情绪的valence和arousal上分别取得了最小误差均值0.083和0.084;在DEAP数据集上,valence和arousal的误差分别低至0.108和0.113.与四种传统机器学习算法以及GRU、CGRU、CNN、CNN-LSTM、CNN-Bi-LSTM、TCNN等六种深度学习模型相比,本文方法表现出了更高的识别精度和稳定性,能够有效满足应用场景的需求. 展开更多
关键词 脑电信号 情绪识别 特征提取 特征融合 双流网络模型
在线阅读 下载PDF
Relefe深度神经网络林火烟雾识别算法
17
作者 陈来荣 李玲 +2 位作者 孙冰剑 程朋乐 刘晓东 《农业工程学报》 北大核心 2025年第15期192-199,共8页
森林火灾频发严重威胁经济与自然环境,及时识别烟雾这一早期信号对防控至关重要。针对现有检测模型因样本量小而导致的识别率低、训练困难等问题,该研究提出基于区域级特征提取器(region level feature extractor,Relefe)的深度神经网... 森林火灾频发严重威胁经济与自然环境,及时识别烟雾这一早期信号对防控至关重要。针对现有检测模型因样本量小而导致的识别率低、训练困难等问题,该研究提出基于区域级特征提取器(region level feature extractor,Relefe)的深度神经网络算法。该算法通过自适应提取图像区域级特征,强化模型对林火烟雾细节的学习能力,突破传统方法在有限样本下的性能瓶颈。Relefe通过从低级特征生成判别性区域特征,有效提升模型泛化能力。结果表明,在样本有限条件下,融入Relefe的Vision Transformer(ViT)和ResNet18模型分别达到85.09%和85.96%的准确率,较基线模型分别提升13.16和8.77个百分点,提升了模型在林火烟雾识别任务中的性能。相较于传统卷积网络,Relefe算法使模型在有限训练数据下仍保持高识别精度,为构建快速响应森林火灾预警系统提供了有效技术路径,对提升防灾减灾能力具有重要实践价值。 展开更多
关键词 烟雾识别 深度学习 特征提取 有限样本
在线阅读 下载PDF
弹道导弹雷达目标识别研究进展
18
作者 李开明 张袁鹏 +1 位作者 罗迎 代肖楠 《系统工程与电子技术》 北大核心 2025年第9期2870-2889,共20页
弹道导弹目标分类识别是导弹防御系统的核心问题之一,具有重要的军事价值。首先,从装备发展角度对世界上主要国家的弹道导弹防御系统及其典型雷达装备进行简要概述。在此基础上,进一步从技术角度对基于传统方法的弹道导弹目标分类识别... 弹道导弹目标分类识别是导弹防御系统的核心问题之一,具有重要的军事价值。首先,从装备发展角度对世界上主要国家的弹道导弹防御系统及其典型雷达装备进行简要概述。在此基础上,进一步从技术角度对基于传统方法的弹道导弹目标分类识别和基于深度学习方法的弹道导弹目标分类识别进行梳理总结。最后,对弹道导弹雷达目标识别的发展方向进行展望,为后续研究提供参考和借鉴。 展开更多
关键词 弹道导弹 防御系统 特征提取 深度学习 分类识别
在线阅读 下载PDF
论“拣矸就是拣图像”的学术思想
19
作者 马宏伟 张烨 +5 位作者 王鹏 曹现刚 聂珍 魏小荣 周文剑 张明臻 《煤炭科学技术》 北大核心 2025年第5期291-300,共10页
煤矸石分拣是提高煤炭质量最基本、最有效、最重要的技术措施,提高煤矸石分拣的准确性、高效性是煤矸石分拣面临的严峻挑战。深入研究分析了现有“抓取分拣”“拨叉分拣”和“气动分拣”3种煤矸石智能分拣系统架构和原理,提出了“拣矸... 煤矸石分拣是提高煤炭质量最基本、最有效、最重要的技术措施,提高煤矸石分拣的准确性、高效性是煤矸石分拣面临的严峻挑战。深入研究分析了现有“抓取分拣”“拨叉分拣”和“气动分拣”3种煤矸石智能分拣系统架构和原理,提出了“拣矸就是拣图像”的学术思想,建立了“拣矸就是拣图像”学术思想的逻辑架构,阐明了“拣矸就是拣图像”学术思想的基本内涵,主要包括基于图像的煤矸石识别、基于图像的煤矸石分拣特征提取、图像驱动的分拣器动态目标跟踪和基于图像序列的多任务多分拣器协同等关键技术。针对基于图像的煤矸石识别问题,提出了将视觉图像和射线图像融合的识别原理和方法,能够有效提高煤矸石识别的准确率;针对煤矸石图像分拣特征提取问题,提出了基于煤矸石图像的平面特征和深度特征提取和融合算法,构建了煤矸石分拣立方体,能够提高煤矸石分拣的准确性;针对动态煤矸石跟踪问题,提出了基于图像的煤矸石匹配跟踪和路径规划方法,能够提高分拣的精准性和可靠性;针对多分拣器智能协同分拣问题,提出了以煤矸石图像信息库为基础,构建分拣器综合收益函数实现多分拣器多任务最优分配,融合强化学习方法实现多分拣器智能协同控制以及分拣器数量最优配置,能够有效提高多分拣器系统的分拣效率。按照“拣矸就是拣图像”的学术思想,自主研发了双机械臂桁架式煤矸石分拣机器人实验平台,验证了该学术思想的正确性和可行性,并在铜川矿业公司玉华煤矿成功应用。“拣矸就是拣图像”的学术思想为破解煤矸石分拣智能化、精准化、高效化难题奠定了理论基础。 展开更多
关键词 拣矸就是拣图像 图像识别 图像特征提取 图像驱动 动态目标跟踪 智能协同分拣
在线阅读 下载PDF
基于YOLO-Z的果实识别检测算法
20
作者 苏佳 罗都 +2 位作者 梁奔 冯康康 张建燕 《计算机工程与设计》 北大核心 2025年第5期1503-1511,共9页
针对当前果实识别中检测速度慢和遮挡目标识别准确率低的问题,提出一种YOLO-Z果实识别算法。使用YOLOv7-Tiny作为基础模型,采用轻量级的T-Net作为新的特征提取网络,减少网络层数,解决参数量过大及模型计算速度过慢的问题;使用AFPN特征... 针对当前果实识别中检测速度慢和遮挡目标识别准确率低的问题,提出一种YOLO-Z果实识别算法。使用YOLOv7-Tiny作为基础模型,采用轻量级的T-Net作为新的特征提取网络,减少网络层数,解决参数量过大及模型计算速度过慢的问题;使用AFPN特征融合结构缩减非相邻层之间较大的语义差距,增强特征信息的提取,提升模型的精度;引入损失函数Repulsion Loss,用于计算遮挡损失,解决目标遮挡问题,提高果实识别检测效果。实验结果表明,改进后的模型参数量达4.3 M,FPS为每秒200帧,mAP达到93.40%,较YOLOv7-Tiny提升0.9个百分点,参数量下降1.7 M,验证了该模型的有效性。 展开更多
关键词 目标检测 特征信息 分类回归 果实识别 目标遮挡 每秒传输帧数 平均检测精度均值
在线阅读 下载PDF
上一页 1 2 134 下一页 到第
使用帮助 返回顶部