In this paper, the problem of reliable automatic target recognition from incoherent radar returns is discussed and a new method for ship target recognition is proposed. Based on this method, an experimental system for...In this paper, the problem of reliable automatic target recognition from incoherent radar returns is discussed and a new method for ship target recognition is proposed. Based on this method, an experimental system for ship target recognition is implemented. The results obtained from the theoretical and experimental study indicate that a high reliability of recognition can be achieved by using the designed recognition system. An average success rate of more than 90% is reached for 8 classes of ships.展开更多
Airborne LIDAR can flexibly obtain point cloud data with three-dimensional structural information,which can improve its effectiveness of automatic target recognition in the complex environment.Compared with 2D informa...Airborne LIDAR can flexibly obtain point cloud data with three-dimensional structural information,which can improve its effectiveness of automatic target recognition in the complex environment.Compared with 2D information,3D information performs better in separating objects and background.However,an aircraft platform can have a negative influence on LIDAR obtained data because of various flight attitudes,flight heights and atmospheric disturbances.A structure of global feature based 3D automatic target recognition method for airborne LIDAR is proposed,which is composed of offline phase and online phase.The performance of four global feature descriptors is compared.Considering the summed volume region(SVR) discrepancy in real objects,SVR selection is added into the pre-processing operations to eliminate mismatching clusters compared with the interested target.Highly reliable simulated data are obtained under various sensor’s altitudes,detection distances and atmospheric disturbances.The final experiments results show that the added step increases the recognition rate by above 2.4% and decreases the execution time by about 33%.展开更多
With the improvement of radar resolution,the dimension of the high resolution range profile(HRRP)has increased.In order to solve the small sample problem caused by the increase of HRRP dimension,an algorithm based on ...With the improvement of radar resolution,the dimension of the high resolution range profile(HRRP)has increased.In order to solve the small sample problem caused by the increase of HRRP dimension,an algorithm based on kernel joint discriminant analysis(KJDA)is proposed.Compared with the traditional feature extraction methods,KJDA possesses stronger discriminative ability in the kernel feature space.K-nearest neighbor(KNN)and kernel support vector machine(KSVM)are applied as feature classifiers to verify the classification effect.Experimental results on the measured aircraft datasets show that KJDA can reduce the dimensionality,and improve target recognition performance.展开更多
This paper considers the problem of target and jamming recognition for the pulse Doppler radar fuze(PDRF).To solve the problem,the matched filter outputs of the PDRF under the action of target and jamming are analyzed...This paper considers the problem of target and jamming recognition for the pulse Doppler radar fuze(PDRF).To solve the problem,the matched filter outputs of the PDRF under the action of target and jamming are analyzed.Then,the frequency entropy and peak-to-peak ratio are extracted from the matched filter output of the PDRF,and the time-frequency joint feature is constructed.Based on the time-frequency joint feature,the naive Bayesian classifier(NBC)with minimal risk is established for target and jamming recognition.To improve the adaptability of the proposed method in complex environments,an online update process that adaptively modifies the classifier in the duration of the work of the PDRF is proposed.The experiments show that the PDRF can maintain high recognition accuracy when the signal-to-noise ratio(SNR)decreases and the jamming-to-signal ratio(JSR)increases.Moreover,the applicable analysis shows that he ONBCMR method has low computational complexity and can fully meet the real-time requirements of PDRF.展开更多
In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) ba...In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) based on the maximum margin criterion(MMC) is proposed for recognizing the class of ship targets utilizing the high-resolution range profile(HRRP). Multi-scale fusion is introduced to capture the local and detailed information in small-scale features, and the global and contour information in large-scale features, offering help to extract the edge information from sea clutter and further improving the target recognition accuracy. The proposed method can maximally preserve the multi-scale fusion sparse of data and maximize the class separability in the reduced dimensionality by reproducing kernel Hilbert space. Experimental results on the measured radar data show that the proposed method can effectively extract the features of ship target from sea clutter, further reduce the feature dimensionality, and improve target recognition performance.展开更多
To improve the recognition rate of signal modulation recognition methods based on the clustering algorithm under the low SNR, a modulation recognition method is proposed. The characteristic parameter of the signal is ...To improve the recognition rate of signal modulation recognition methods based on the clustering algorithm under the low SNR, a modulation recognition method is proposed. The characteristic parameter of the signal is extracted by using a clustering algorithm, the neural network is trained by using the algorithm of variable gradient correction (Polak-Ribiere) so as to enhance the rate of convergence, improve the performance of recognition under the low SNR and realize modulation recognition of the signal based on the modulation system of the constellation diagram. Simulation results show that the recognition rate based on this algorithm is enhanced over 30% compared with the methods that adopt clustering algorithm or neural network based on the back propagation algorithm alone under the low SNR. The recognition rate can reach 90% when the SNR is 4 dB, and the method is easy to be achieved so that it has a broad application prospect in the modulating recognition.展开更多
To improve the feature extraction of ship-radiated noise in a complex ocean environment,a novel feature extraction method for ship-radiated noise based on complete ensemble empirical mode decomposition with adaptive s...To improve the feature extraction of ship-radiated noise in a complex ocean environment,a novel feature extraction method for ship-radiated noise based on complete ensemble empirical mode decomposition with adaptive selective noise(CEEMDASN) and refined composite multiscale fluctuation-based dispersion entropy(RCMFDE) is proposed.CEEMDASN is proposed in this paper which takes into account the high frequency intermittent components when decomposing the signal.In addition,RCMFDE is also proposed in this paper which refines the preprocessing process of the original signal based on composite multi-scale theory.Firstly,the original signal is decomposed into several intrinsic mode functions(IMFs)by CEEMDASN.Energy distribution ratio(EDR) and average energy distribution ratio(AEDR) of all IMF components are calculated.Then,the IMF with the minimum difference between EDR and AEDR(MEDR)is selected as characteristic IMF.The RCMFDE of characteristic IMF is estimated as the feature vectors of ship-radiated noise.Finally,these feature vectors are sent to self-organizing map(SOM) for classifying and identifying.The proposed method is applied to the feature extraction of ship-radiated noise.The result shows its effectiveness and universality.展开更多
Recognition of substrates in cobalt crust mining areas can improve mining efficiency.Aiming at the problem of unsatisfactory performance of using single feature to recognize the seabed material of the cobalt crust min...Recognition of substrates in cobalt crust mining areas can improve mining efficiency.Aiming at the problem of unsatisfactory performance of using single feature to recognize the seabed material of the cobalt crust mining area,a method based on multiple-feature sets is proposed.Features of the target echoes are extracted by linear prediction method and wavelet analysis methods,and the linear prediction coefficient and linear prediction cepstrum coefficient are also extracted.Meanwhile,the characteristic matrices of modulus maxima,sub-band energy and multi-resolution singular spectrum entropy are obtained,respectively.The resulting features are subsequently compressed by kernel Fisher discriminant analysis(KFDA),the output features are selected using genetic algorithm(GA)to obtain optimal feature subsets,and recognition results of classifier are chosen as genetic fitness function.The advantages of this method are that it can describe the signal features more comprehensively and select the favorable features and remove the redundant features to the greatest extent.The experimental results show the better performance of the proposed method in comparison with only using KFDA or GA.展开更多
To solve the problem of mistake recognition among rice diseases, automatic recognition methods based on BP(back propagation) neural network were studied in this paper for blast, sheath blight and bacterial blight. Cho...To solve the problem of mistake recognition among rice diseases, automatic recognition methods based on BP(back propagation) neural network were studied in this paper for blast, sheath blight and bacterial blight. Chose mobile terminal equipment as image collecting tool and built database of rice leaf images with diseases under threshold segmentation method. Characteristic parameters were extracted from color, shape and texture. Furthermore, parameters were optimized using the single-factor variance analysis and the effects of BP neural network model. The optimization would simplify BP neural network model without reducing the recognition accuracy. The finally model could successfully recognize 98%, 96% and 98% of rice blast, sheath blight and white leaf blight, respectively.展开更多
In order to make the effective ECCM to the deceptive jamming, especially the angle deceptive jamming, this paper establishes a signal-processing model for anti-deceptive jamming firstly, in which two feature-extractin...In order to make the effective ECCM to the deceptive jamming, especially the angle deceptive jamming, this paper establishes a signal-processing model for anti-deceptive jamming firstly, in which two feature-extracting algorithms, i.e. the statistical algorithm and the neural network (NN) algorithm are presented, then uses the RBF NN as the classitier in the processing model. Finally the two algorithms are validated and compared through some simulations.展开更多
In this work,a system for recognition of newspaper printed in Gurumukhi script is presented.Four feature extraction techniques,namely,zoning features,diagonal features,parabola curve fitting based features,and power c...In this work,a system for recognition of newspaper printed in Gurumukhi script is presented.Four feature extraction techniques,namely,zoning features,diagonal features,parabola curve fitting based features,and power curve fitting based features are considered for extracting the statistical properties of the characters printed in the newspaper.Different combinations of these features are also applied to improve the recognition accuracy.For recognition,four classification techniques,namely,k-NN,linear-SVM,decision tree,and random forest are used.A database for the experiments is collected from three major Gurumukhi script newspapers which are Ajit,Jagbani and Punjabi Tribune.Using 5-fold cross validation and random forest classifier,a recognition accuracy of 96.19%with a combination of zoning features,diagonal features and parabola curve fitting based features has been reported.A recognition accuracy of 95.21%with a partitioning strategy of data set(70%data as training data and remaining 30%data as testing data)has been achieved.展开更多
Gait energy image(GEI)is composed of static body silhouette and dynamic frequency information of human gait.To achieve fast and efficient gait recognition,combined with the accurate description of the information of d...Gait energy image(GEI)is composed of static body silhouette and dynamic frequency information of human gait.To achieve fast and efficient gait recognition,combined with the accurate description of the information of details and directions in image by Curvelet transform,a gait recognition method using GEI and Curvelet(GEIC)is presented.Firstly,to gain the gait energy images,the gait cycle is selected according to the aspect ratio.Secondly,Curvelet energy coefficients of the GEI,which are used as gait feature vector,are extracted by Curvelet transform in different scales and different directions.Finally,the gait recognition is accomplished by the K nearest neighbor(KNN)classifier.The experimental results demonstrate that GEIC performs well on CASIA(B)database,with the average accuracy of 86.83%.Compared with GEI+KPCA,GEI+W(2D)2PCA and GEI+(2D)~2PCA,the algorithm GEIC achieves better robustness in the condition of the person wearing or packaging.展开更多
文摘In this paper, the problem of reliable automatic target recognition from incoherent radar returns is discussed and a new method for ship target recognition is proposed. Based on this method, an experimental system for ship target recognition is implemented. The results obtained from the theoretical and experimental study indicate that a high reliability of recognition can be achieved by using the designed recognition system. An average success rate of more than 90% is reached for 8 classes of ships.
基金This research was supported by National Natural Science Foundation of China(No.61271353,61871389)Major Funding Projects of National University of Defense Technology(No.ZK18-01-02)Foundation of State Key Laboratory of Pulsed Power Laser Technology(No.SKL2018ZR09).
文摘Airborne LIDAR can flexibly obtain point cloud data with three-dimensional structural information,which can improve its effectiveness of automatic target recognition in the complex environment.Compared with 2D information,3D information performs better in separating objects and background.However,an aircraft platform can have a negative influence on LIDAR obtained data because of various flight attitudes,flight heights and atmospheric disturbances.A structure of global feature based 3D automatic target recognition method for airborne LIDAR is proposed,which is composed of offline phase and online phase.The performance of four global feature descriptors is compared.Considering the summed volume region(SVR) discrepancy in real objects,SVR selection is added into the pre-processing operations to eliminate mismatching clusters compared with the interested target.Highly reliable simulated data are obtained under various sensor’s altitudes,detection distances and atmospheric disturbances.The final experiments results show that the added step increases the recognition rate by above 2.4% and decreases the execution time by about 33%.
基金supported by the National Natural Science Foundation of China(61471191)the Aeronautical Science Foundation of China(20152052026)the Foundation of Graduate Innovation Center in NUAA(kfjj20170313)
文摘With the improvement of radar resolution,the dimension of the high resolution range profile(HRRP)has increased.In order to solve the small sample problem caused by the increase of HRRP dimension,an algorithm based on kernel joint discriminant analysis(KJDA)is proposed.Compared with the traditional feature extraction methods,KJDA possesses stronger discriminative ability in the kernel feature space.K-nearest neighbor(KNN)and kernel support vector machine(KSVM)are applied as feature classifiers to verify the classification effect.Experimental results on the measured aircraft datasets show that KJDA can reduce the dimensionality,and improve target recognition performance.
基金supported by the National Natural Science Foundation of China(Grant No.61973037 and No.61673066).
文摘This paper considers the problem of target and jamming recognition for the pulse Doppler radar fuze(PDRF).To solve the problem,the matched filter outputs of the PDRF under the action of target and jamming are analyzed.Then,the frequency entropy and peak-to-peak ratio are extracted from the matched filter output of the PDRF,and the time-frequency joint feature is constructed.Based on the time-frequency joint feature,the naive Bayesian classifier(NBC)with minimal risk is established for target and jamming recognition.To improve the adaptability of the proposed method in complex environments,an online update process that adaptively modifies the classifier in the duration of the work of the PDRF is proposed.The experiments show that the PDRF can maintain high recognition accuracy when the signal-to-noise ratio(SNR)decreases and the jamming-to-signal ratio(JSR)increases.Moreover,the applicable analysis shows that he ONBCMR method has low computational complexity and can fully meet the real-time requirements of PDRF.
基金supported by the National Natural Science Foundation of China (62271255,61871218)the Fundamental Research Funds for the Central University (3082019NC2019002)+1 种基金the Aeronautical Science Foundation (ASFC-201920007002)the Program of Remote Sensing Intelligent Monitoring and Emergency Services for Regional Security Elements。
文摘In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) based on the maximum margin criterion(MMC) is proposed for recognizing the class of ship targets utilizing the high-resolution range profile(HRRP). Multi-scale fusion is introduced to capture the local and detailed information in small-scale features, and the global and contour information in large-scale features, offering help to extract the edge information from sea clutter and further improving the target recognition accuracy. The proposed method can maximally preserve the multi-scale fusion sparse of data and maximize the class separability in the reduced dimensionality by reproducing kernel Hilbert space. Experimental results on the measured radar data show that the proposed method can effectively extract the features of ship target from sea clutter, further reduce the feature dimensionality, and improve target recognition performance.
基金supported by the National Natural Science Foundation of China(6107207061301179)the National Science and Technology Major Project(2010ZX03006-002-04)
文摘To improve the recognition rate of signal modulation recognition methods based on the clustering algorithm under the low SNR, a modulation recognition method is proposed. The characteristic parameter of the signal is extracted by using a clustering algorithm, the neural network is trained by using the algorithm of variable gradient correction (Polak-Ribiere) so as to enhance the rate of convergence, improve the performance of recognition under the low SNR and realize modulation recognition of the signal based on the modulation system of the constellation diagram. Simulation results show that the recognition rate based on this algorithm is enhanced over 30% compared with the methods that adopt clustering algorithm or neural network based on the back propagation algorithm alone under the low SNR. The recognition rate can reach 90% when the SNR is 4 dB, and the method is easy to be achieved so that it has a broad application prospect in the modulating recognition.
基金supported by the National Natural Science Foundation of China under Grant 51709228。
文摘To improve the feature extraction of ship-radiated noise in a complex ocean environment,a novel feature extraction method for ship-radiated noise based on complete ensemble empirical mode decomposition with adaptive selective noise(CEEMDASN) and refined composite multiscale fluctuation-based dispersion entropy(RCMFDE) is proposed.CEEMDASN is proposed in this paper which takes into account the high frequency intermittent components when decomposing the signal.In addition,RCMFDE is also proposed in this paper which refines the preprocessing process of the original signal based on composite multi-scale theory.Firstly,the original signal is decomposed into several intrinsic mode functions(IMFs)by CEEMDASN.Energy distribution ratio(EDR) and average energy distribution ratio(AEDR) of all IMF components are calculated.Then,the IMF with the minimum difference between EDR and AEDR(MEDR)is selected as characteristic IMF.The RCMFDE of characteristic IMF is estimated as the feature vectors of ship-radiated noise.Finally,these feature vectors are sent to self-organizing map(SOM) for classifying and identifying.The proposed method is applied to the feature extraction of ship-radiated noise.The result shows its effectiveness and universality.
基金Project(51874353)supported by the National Natural Science Foundation of ChinaProject(GCX20190898Y)supported by Mittal Student Innovation Project,China。
文摘Recognition of substrates in cobalt crust mining areas can improve mining efficiency.Aiming at the problem of unsatisfactory performance of using single feature to recognize the seabed material of the cobalt crust mining area,a method based on multiple-feature sets is proposed.Features of the target echoes are extracted by linear prediction method and wavelet analysis methods,and the linear prediction coefficient and linear prediction cepstrum coefficient are also extracted.Meanwhile,the characteristic matrices of modulus maxima,sub-band energy and multi-resolution singular spectrum entropy are obtained,respectively.The resulting features are subsequently compressed by kernel Fisher discriminant analysis(KFDA),the output features are selected using genetic algorithm(GA)to obtain optimal feature subsets,and recognition results of classifier are chosen as genetic fitness function.The advantages of this method are that it can describe the signal features more comprehensively and select the favorable features and remove the redundant features to the greatest extent.The experimental results show the better performance of the proposed method in comparison with only using KFDA or GA.
基金Supported by Quality and Brand Construction of"Internet+County Characteristic Agricultural Products"(ZY17C06)
文摘To solve the problem of mistake recognition among rice diseases, automatic recognition methods based on BP(back propagation) neural network were studied in this paper for blast, sheath blight and bacterial blight. Chose mobile terminal equipment as image collecting tool and built database of rice leaf images with diseases under threshold segmentation method. Characteristic parameters were extracted from color, shape and texture. Furthermore, parameters were optimized using the single-factor variance analysis and the effects of BP neural network model. The optimization would simplify BP neural network model without reducing the recognition accuracy. The finally model could successfully recognize 98%, 96% and 98% of rice blast, sheath blight and white leaf blight, respectively.
文摘In order to make the effective ECCM to the deceptive jamming, especially the angle deceptive jamming, this paper establishes a signal-processing model for anti-deceptive jamming firstly, in which two feature-extracting algorithms, i.e. the statistical algorithm and the neural network (NN) algorithm are presented, then uses the RBF NN as the classitier in the processing model. Finally the two algorithms are validated and compared through some simulations.
文摘In this work,a system for recognition of newspaper printed in Gurumukhi script is presented.Four feature extraction techniques,namely,zoning features,diagonal features,parabola curve fitting based features,and power curve fitting based features are considered for extracting the statistical properties of the characters printed in the newspaper.Different combinations of these features are also applied to improve the recognition accuracy.For recognition,four classification techniques,namely,k-NN,linear-SVM,decision tree,and random forest are used.A database for the experiments is collected from three major Gurumukhi script newspapers which are Ajit,Jagbani and Punjabi Tribune.Using 5-fold cross validation and random forest classifier,a recognition accuracy of 96.19%with a combination of zoning features,diagonal features and parabola curve fitting based features has been reported.A recognition accuracy of 95.21%with a partitioning strategy of data set(70%data as training data and remaining 30%data as testing data)has been achieved.
基金The Graduate Education Steering Committee of National Engineering Professional Degree (2016-ZX-064)Natural Science Foundation of Tianjin of China (16JCYBJC 15400)
文摘Gait energy image(GEI)is composed of static body silhouette and dynamic frequency information of human gait.To achieve fast and efficient gait recognition,combined with the accurate description of the information of details and directions in image by Curvelet transform,a gait recognition method using GEI and Curvelet(GEIC)is presented.Firstly,to gain the gait energy images,the gait cycle is selected according to the aspect ratio.Secondly,Curvelet energy coefficients of the GEI,which are used as gait feature vector,are extracted by Curvelet transform in different scales and different directions.Finally,the gait recognition is accomplished by the K nearest neighbor(KNN)classifier.The experimental results demonstrate that GEIC performs well on CASIA(B)database,with the average accuracy of 86.83%.Compared with GEI+KPCA,GEI+W(2D)2PCA and GEI+(2D)~2PCA,the algorithm GEIC achieves better robustness in the condition of the person wearing or packaging.