期刊文献+
共找到49篇文章
< 1 2 3 >
每页显示 20 50 100
Infrared small target detection algorithm via partial sum of the tensor nuclear norm and direction residual weighting
1
作者 SUN Bin XIA Xing-Ling +1 位作者 FU Rong-Guo SHI Liang 《红外与毫米波学报》 北大核心 2025年第2期277-288,共12页
Aiming at the problem that infrared small target detection faces low contrast between the background and the target and insufficient noise suppression ability under the complex cloud background,an infrared small targe... Aiming at the problem that infrared small target detection faces low contrast between the background and the target and insufficient noise suppression ability under the complex cloud background,an infrared small target detection method based on the tensor nuclear norm and direction residual weighting was proposed.Based on converting the infrared image into an infrared patch tensor model,from the perspective of the low-rank nature of the background tensor,and taking advantage of the difference in contrast between the background and the target in different directions,we designed a double-neighborhood local contrast based on direction residual weighting method(DNLCDRW)combined with the partial sum of tensor nuclear norm(PSTNN)to achieve effective background suppression and recovery of infrared small targets.Experiments show that the algorithm is effective in suppressing the background and improving the detection ability of the target. 展开更多
关键词 infrared small target detection infrared patch tensor model partial sum of the tensor nuclear norm direction residual weighting
在线阅读 下载PDF
Improved Small Target Detection Method for SAR Image Based on YOLOv7
2
作者 YANG Ke SI Zhan-jun +1 位作者 ZHANG Ying-xue SHI Jin-yu 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第5期53-62,共10页
In order to solve the problems that the current synthetic aperture radar(SAR)image target detection method cannot adapt to targets of different sizes,and the complex image background leads to low detection accuracy,an... In order to solve the problems that the current synthetic aperture radar(SAR)image target detection method cannot adapt to targets of different sizes,and the complex image background leads to low detection accuracy,an improved SAR image small target detection method based on YOLOv7 was proposed in this study.The proposed method improved the feature extraction network by using Switchable Around Convolution(SAConv)in the backbone network to help the model capture target information at different scales,thus improving the feature extraction ability for small targets.Based on the attention mechanism,the DyHead module was embedded in the target detection head to reduce the impact of complex background,and better focus on the small targets.In addition,the NWD loss function was introduced and combined with CIoU loss.Compared to the CIoU loss function typically used in YOLOv7,the NWD loss function pays more attention to the processing of small targets,so as to further improve the detection ability of small targets.The experimental results on the HRSID dataset indicate that the proposed method achieved mAP@0.5 and mAP@0.95 scores of 93.5%and 71.5%,respectively.Compared to the baseline model,this represents an increase of 7.2%and 7.6%,respectively.The proposed method can effectively complete the task of SAR image small target detection. 展开更多
关键词 Small target detection Synthetic aperture radar YOLOv7 DyHead module Switchable Around Convolution
在线阅读 下载PDF
Infrared small target detection using sparse representation 被引量:12
3
作者 Jiajia Zhao ZhengyuanTang +1 位作者 Jie Yang Erqi Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第6期897-904,共8页
Sparse representation has recently been proved to be a powerful tool in image processing and object recognition.This paper proposes a novel small target detection algorithm based on this technique.By modelling a small... Sparse representation has recently been proved to be a powerful tool in image processing and object recognition.This paper proposes a novel small target detection algorithm based on this technique.By modelling a small target as a linear combination of certain target samples and then solving a sparse 0-minimization problem,the proposed apporach successfully improves and optimizes the small target representation with innovation.Furthermore,the sparsity concentration index(SCI) is creatively employed to evaluate the coefficients of each block representation and simpfy target identification.In the detection frame,target samples are firstly generated to constitute an over-complete dictionary matrix using Gaussian intensity model(GIM),and then sparse model solvers are applied to finding sparse representation for each sub-image block.Finally,SCI lexicographical evalution of the entire image incorparates with a simple threshold locate target position.The effectiveness and robustness of the proposed algorithm are demonstrated by the exprimental results. 展开更多
关键词 target detection sparse representation orthogonal matching pursuit(OMP).
在线阅读 下载PDF
Target detection using CDMA based passive bistatic radar 被引量:10
4
作者 Haitao Wang Jun Wang Hongwei Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第6期858-865,共8页
Recently, the code division multiple access (CDMA) waveform exists in the large area across the world. However, when using the CDMA system as the illuminator of opportunity for the passive bistatic radar (PBR), th... Recently, the code division multiple access (CDMA) waveform exists in the large area across the world. However, when using the CDMA system as the illuminator of opportunity for the passive bistatic radar (PBR), there exists interference not only from the base station used as the illuminator of opportunity but also from other base stations with the same frequency. And be cause in the CDMA system, the signal transmitted by each base station is different, using the direct signal of one base station can not cancel the interference from other base stations. A CDMA based PBR using an element linear array antenna as both the reference antenna and surveillance antenna is introduced. To deal with the interference in this PBR system, an adaptive temporal cancellation algorithm is used to remove the interference from the base station used as the illuminator of opportunity firstly. And then a robust adaptive beamformer is used to suppress the interference from other base stations. Finally, the preliminary experiment re sults demonstrate the feasibility of using CDMA signals as a radar waveform. 展开更多
关键词 passive bistatic radar (PBR) code division multipleaccess (CDMA) signal interference suppression target detection.
在线阅读 下载PDF
Moving target detection based on improved ghost suppression and adaptive visual background extraction 被引量:10
5
作者 LIU Ling CHAI Guo-hua QU Zhong 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第3期747-759,共13页
Visual background extraction algorithm(ViBe)uses the first frame image to initialize the background model,which can easily introduce the“ghost”.Because ViBe uses the fixed segmentation threshold to achieve the foreg... Visual background extraction algorithm(ViBe)uses the first frame image to initialize the background model,which can easily introduce the“ghost”.Because ViBe uses the fixed segmentation threshold to achieve the foreground and background segmentation,the detection results in many false detections for the highly dynamic background.To solve these problems,an improved ghost suppression and adaptive Visual Background Extraction algorithm is proposed in this paper.Firstly,with the pixel’s temporal and spatial information,the historical pixels of a certain combination are used to initialize the background model in the odd frames of the video sequence.Secondly,the background sample set combined with the neighborhood pixels are used to determine a complex degree of the background,to acquire the adaptive segmentation threshold.Thirdly,the update rate is adjusted based on the complexity of the background.Finally,the detected result goes through a post-processing to achieve better detection results.The experimental results show that the improved algorithm will not only quickly suppress the“ghost”,but also have a better detection in a complex dynamic background. 展开更多
关键词 moving target detection ghost suppression adaptive visual background extraction
在线阅读 下载PDF
Improved TQWT for marine moving target detection 被引量:11
6
作者 PAN Meiyan SUN Jun +4 位作者 YANG Yuhao LI Dasheng XIE Sudao WANG Shengli CHEN Jianjun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第3期470-481,共12页
Under the conditions of strong sea clutter and complex moving targets,it is extremely difficult to detect moving targets in the maritime surface.This paper proposes a new algorithm named improved tunable Q-factor wave... Under the conditions of strong sea clutter and complex moving targets,it is extremely difficult to detect moving targets in the maritime surface.This paper proposes a new algorithm named improved tunable Q-factor wavelet transform(TQWT)for moving target detection.Firstly,this paper establishes a moving target model and sparsely compensates the Doppler migration of the moving target in the fractional Fourier transform(FRFT)domain.Then,TQWT is adopted to decompose the signal based on the discrimination between the sea clutter and the target’s oscillation characteristics,using the basis pursuit denoising(BPDN)algorithm to get the wavelet coefficients.Furthermore,an energy selection method based on the optimal distribution of sub-bands energy is proposed to sparse the coefficients and reconstruct the target.Finally,experiments on the Council for Scientific and Industrial Research(CSIR)dataset indicate the performance of the proposed method and provide the basis for subsequent target detection. 展开更多
关键词 marine moving target detection improved tunable Q-factor wavelet transform(TQWT) fractional Fourier transform(FRFT) basis pursuit denoising(BPDN)
在线阅读 下载PDF
Fast-armored target detection based on multi-scale representation and guided anchor 被引量:6
7
作者 Fan-jie Meng Xin-qing Wang +2 位作者 Fa-ming Shao Dong Wang Xiao-dong Hu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第4期922-932,共11页
Focused on the task of fast and accurate armored target detection in ground battlefield,a detection method based on multi-scale representation network(MS-RN) and shape-fixed Guided Anchor(SF-GA)scheme is proposed.Firs... Focused on the task of fast and accurate armored target detection in ground battlefield,a detection method based on multi-scale representation network(MS-RN) and shape-fixed Guided Anchor(SF-GA)scheme is proposed.Firstly,considering the large-scale variation and camouflage of armored target,a new MS-RN integrating contextual information in battlefield environment is designed.The MS-RN extracts deep features from templates with different scales and strengthens the detection ability of small targets.Armored targets of different sizes are detected on different representation features.Secondly,aiming at the accuracy and real-time detection requirements,improved shape-fixed Guided Anchor is used on feature maps of different scales to recommend regions of interests(ROIs).Different from sliding or random anchor,the SF-GA can filter out 80% of the regions while still improving the recall.A special detection dataset for armored target,named Armored Target Dataset(ARTD),is constructed,based on which the comparable experiments with state-of-art detection methods are conducted.Experimental results show that the proposed method achieves outstanding performance in detection accuracy and efficiency,especially when small armored targets are involved. 展开更多
关键词 RED image RPN Fast-armored target detection based on multi-scale representation and guided anchor
在线阅读 下载PDF
Arbitrary-oriented target detection in large scene sar images 被引量:4
8
作者 Zi-shuo Han Chun-ping Wang Qiang Fu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第4期933-946,共14页
Target detection in the field of synthetic aperture radar(SAR) has attracted considerable attention of researchers in national defense technology worldwide,owing to its unique advantages like high resolution and large... Target detection in the field of synthetic aperture radar(SAR) has attracted considerable attention of researchers in national defense technology worldwide,owing to its unique advantages like high resolution and large scene image acquisition capabilities of SAR.However,due to strong speckle noise and low signal-to-noise ratio,it is difficult to extract representative features of target from SAR images,which greatly inhibits the effectiveness of traditional methods.In order to address the above problems,a framework called contextual rotation region-based convolutional neural network(RCNN) with multilayer fusion is proposed in this paper.Specifically,aimed to enable RCNN to perform target detection in large scene SAR images efficiently,maximum sliding strategy is applied to crop the large scene image into a series of sub-images before RCNN.Instead of using the highest-layer output for proposal generation and target detection,fusion feature maps with high resolution and rich semantic information are constructed by multilayer fusion strategy.Then,we put forwards rotation anchors to predict the minimum circumscribed rectangle of targets to reduce redundant detection region.Furthermore,shadow areas serve as contextual features to provide extraneous information for the detector identify and locate targets accurately.Experimental results on the simulated large scene SAR image dataset show that the proposed method achieves a satisfactory performance in large scene SAR target detection. 展开更多
关键词 target detection Convolutional neural network Multilayer fusion Context information Synthetic aperture radar
在线阅读 下载PDF
Target detection method in passive bistatic radar 被引量:5
9
作者 CHEN Gang WANG Jun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第3期510-519,共10页
Owing to the advantages in detecting the low altitude and stealth target,passive bistatic radar(PBR)has received much attention in surveillance purposes.Due to the uncontrollable characteristic of the transmitted sign... Owing to the advantages in detecting the low altitude and stealth target,passive bistatic radar(PBR)has received much attention in surveillance purposes.Due to the uncontrollable characteristic of the transmitted signal,a high level range or Doppler sidelobes may exist in the ambiguity function which will degrade the target detection performance.Mismatched filtering is a common method to deal with the ambiguity sidelobe problem.However,when mismatched filtering is applied,sidelobes cannot be eliminated completely.The residual sidelobes will cause false-alarm when the constant false alarm ratio(CFAR)is applied.To deal with this problem,a new target detection method based on preprocessing is proposed.In this new method,the ambiguity range and Doppler sidelobes are recognized and eliminated by the preprocessing method according to the prior information.CFAR is also employed to obtain the information of the target echo.Simulation results and results on real data illustrate the effectiveness of the proposed method. 展开更多
关键词 passive bistatic radar(PBR) mismatched filtering ambiguity sidelobe target detection
在线阅读 下载PDF
Method of moving target detection based on sub-image cancellation for single-antenna airborne synthetic aperture radar 被引量:4
10
作者 Liu Shujun Yuan Yunneng Gao Fei Mao Shiyi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第3期448-453,共6页
The method of moving target detection based on subimage cancellation for single-antenna airborne SAR is presented. First the subimage is obtained through frequency processing is pointed out. The imaging difference of ... The method of moving target detection based on subimage cancellation for single-antenna airborne SAR is presented. First the subimage is obtained through frequency processing is pointed out. The imaging difference of a stationary objects and moving object in the subimage based on the frequency division is analyzed from the fundamental principle. Then the developed method combines the shear averaging algorithm to focus on the moving target in the subimage, after the clutter suppression and the focusing position in each subimage is obtained. Next the observation model and the relative movement of the moving targets between the subimages estimate the moving targets. The theoretical analysis and simulation results demonstrate that the method is effective and can not only detect the moving targets, but also estimate their motion parameters precisely. 展开更多
关键词 synthetic aperture radar moving target detection sub-image cancellation parameter estimation.
在线阅读 下载PDF
Deep convolutional neural network for meteorology target detection in airborne weather radar images 被引量:3
11
作者 YU Chaopeng XIONG Wei +1 位作者 LI Xiaoqing DONG Lei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第5期1147-1157,共11页
Considering the problem that the scattering echo images of airborne Doppler weather radar are often reduced by ground clutters,the accuracy and confidence of meteorology target detection are reduced.In this paper,a de... Considering the problem that the scattering echo images of airborne Doppler weather radar are often reduced by ground clutters,the accuracy and confidence of meteorology target detection are reduced.In this paper,a deep convolutional neural network(DCNN)is proposed for meteorology target detection and ground clutter suppression with a large collection of airborne weather radar images as network input.For each weather radar image,the corresponding digital elevation model(DEM)image is extracted on basis of the radar antenna scan-ning parameters and plane position,and is further fed to the net-work as a supplement for ground clutter suppression.The fea-tures of actual meteorology targets are learned in each bottle-neck module of the proposed network and convolved into deeper iterations in the forward propagation process.Then the network parameters are updated by the back propagation itera-tion of the training error.Experimental results on the real mea-sured images show that our proposed DCNN outperforms the counterparts in terms of six evaluation factors.Meanwhile,the network outputs are in good agreement with the expected mete-orology detection results(labels).It is demonstrated that the pro-posed network would have a promising meteorology observa-tion application with minimal effort on network variables or parameter changes. 展开更多
关键词 meteorology target detection ground clutter sup-pression weather radar images convolutional neural network(CNN)
在线阅读 下载PDF
M-FCN based sea-surface weak target detection 被引量:3
12
作者 PAN Meiyan SUN Jun +2 位作者 YANG Yuhao LI Dasheng YU Junpeng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第5期1111-1118,共8页
This paper focuses on the sea-surface weak target detection based on memory-fully convolutional network(M-FCN)in strong sea clutter.Firstly,the constant false alarm rate(CFAR)detection method utilizes a low threshold ... This paper focuses on the sea-surface weak target detection based on memory-fully convolutional network(M-FCN)in strong sea clutter.Firstly,the constant false alarm rate(CFAR)detection method utilizes a low threshold with high probability of false alarm to detect sea-surface weak targets after non-coherent integration.Reducing the detection threshold can generate a large number of false alarms while increasing the detection rate,and how to suppress a large number of false alarms is the key to improve the performance of weak target detection.Then,the detection result of the low threshold is operated to construct the target matrix suitable for the size of fully convolutional networks and the convolution operator form.Finally,the M-FCN architecture is designed to learn the different accumulation characteristics of the target and the sea clutter between different frames.For improving the detection performance,the historical multi-frame information is memorized by the network,and the end-to-end structure is established to detect sea-surface weak target automatically.Experimental results on measured data demonstrate that the M-FCN method outperforms the traditional track before detection(TBD)method and reduces false alarm tracks by 35.1%,which greatly improves the track quality. 展开更多
关键词 sea-surface weak target detection memory-fully convolutional network(M-FCN) multi-frame information END-TO-END
在线阅读 下载PDF
An algorithm for moving target detection in IR image based on grayscale distribution and kernel function 被引量:6
13
作者 王鲁平 张路平 +1 位作者 赵明 李飚 《Journal of Central South University》 SCIE EI CAS 2014年第11期4270-4278,共9页
A fast algorithm based on the grayscale distribution of infrared target and the weighted kernel function was proposed for the moving target detection(MTD) in dynamic scene of image series. This algorithm is used to de... A fast algorithm based on the grayscale distribution of infrared target and the weighted kernel function was proposed for the moving target detection(MTD) in dynamic scene of image series. This algorithm is used to deal with issues like the large computational complexity, the fluctuation of grayscale, and the noise in infrared images. Four characteristic points were selected by analyzing the grayscale distribution in infrared image, of which the series was quickly matched with an affine transformation model. The image was then divided into 32×32 squares and the gray-weighted kernel(GWK) for each square was calculated. At last, the MTD was carried out according to the variation of the four GWKs. The results indicate that the MTD can be achieved in real time using the algorithm with the fluctuations of grayscale and noise can be effectively suppressed. The detection probability is greater than 90% with the false alarm rate lower than 5% when the calculation time is less than 40 ms. 展开更多
关键词 moving target detection gray-weighted kernel function dynamic background
在线阅读 下载PDF
Visual attention based model for target detection in large-field images 被引量:1
14
作者 Lining Gao Fukun Bi Jian Yang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第1期150-156,共7页
It is of great significance to rapidly detect targets in large-field remote sensing images,with limited computation resources.Employing relative achievements of visual attention in perception psychology,this paper pro... It is of great significance to rapidly detect targets in large-field remote sensing images,with limited computation resources.Employing relative achievements of visual attention in perception psychology,this paper proposes a hierarchical attention based model for target detection.Specifically,at the preattention stage,before getting salient regions,a fast computational approach is applied to build a saliency map.After that,the focus of attention(FOA) can be quickly obtained to indicate the salient objects.Then,at the attention stage,under the FOA guidance,the high-level visual features of the region of interest are extracted in parallel.Finally,at the post-attention stage,by integrating these parallel and independent visual attributes,a decision-template based classifier fusion strategy is proposed to discriminate the task-related targets from the other extracted salient objects.For comparison,experiments on ship detection are done for validating the effectiveness and feasibility of the proposed model. 展开更多
关键词 target detection visual attention salient region classifier fusion.
在线阅读 下载PDF
Robust dual-channel correlation algorithm for complex weak target detection with wideband radar 被引量:1
15
作者 DAI Yan LIU Dan +2 位作者 LI Chuanming WEI Shaopeng HU Qingrong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第5期1130-1146,共17页
In the scene of wideband radar,due to the spread of target scattering points,the attitude and angle of view of the target constantly change in the process of moving.It is difficult to predict,and the actual echo of mu... In the scene of wideband radar,due to the spread of target scattering points,the attitude and angle of view of the target constantly change in the process of moving.It is difficult to predict,and the actual echo of multiple scattered points is not fully matched with the transmitted signal.Therefore,it is challenging for the traditional matching filter method to achieve a complete matching effect in wideband echo detection.In addition,the energy dispersion of complex target echoes is still a problem in radar target detection under broadband conditions.Therefore,this paper proposes a wideband target detection method based on dualchannel correlation processing of range-extended targets.This method fully uses the spatial distribution characteristics of target scattering points of echo signal and the matching characteristics of the dual-channel point extension function itself.The radial accumulation of wideband target echo signal in the complex domain is realized through the adaptive correlation processing of a dual-channel echo signal.The accu-mulation effect of high matching degree is achieved to improve the detection probability and the performance of wideband detection.Finally,electromagnetic simulation experiments and measured data verify that the proposed method has the advan-tages of high signal to noise ratio(SNR)gain and high detection probability under low SNR conditions. 展开更多
关键词 wideband radar target detection DUAL-CHANNEL cor-relation
在线阅读 下载PDF
A New Method of Small Moving Target Detection and Its Performance Analysis 被引量:1
16
作者 Chen Huaming, Sun Guangfu, Lu Huanzhang & Chang Qing ATR Lab. National University of Defense Technology, Changsha, 410073, P. R. China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2002年第4期24-30,共7页
This paper describes a new method of small moving target detection and analyzes the performance of this algorithm. The method is based on multi-level threshold decision-making and sliding trajectory confidence testing... This paper describes a new method of small moving target detection and analyzes the performance of this algorithm. The method is based on multi-level threshold decision-making and sliding trajectory confidence testing technology. The parameters of the algorithm are also given. Experiments have been conducted, the results show that the algorithm has advantages of high detection probability, simple structure, and excellent real-time performance. 展开更多
关键词 Image sequences Small moving target detection Multi-level threshold Trajectory confidence testing.
在线阅读 下载PDF
A camouflage target detection method based on local minimum difference constraints 被引量:1
17
作者 GAN Yuanying LIU Chuntong +1 位作者 LI Hongcai LIU Zhongye 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第3期696-705,共10页
To address the problems of missing inside and incomplete edge contours in camouflaged target detection results,we propose a camouflaged moving target detection algorithm based on local minimum difference constraints(L... To address the problems of missing inside and incomplete edge contours in camouflaged target detection results,we propose a camouflaged moving target detection algorithm based on local minimum difference constraints(LMDC).The algorithm first uses the mean to optimize the initial background model,removes the stable background region by global comparison,and extracts the edge point set in the potential target region so that each boundary point(seed)grows along the center of the target.Finally,we define the minor difference constraints term,combine the seed path and the target space consistency,and calculate the attributes of each pixel in the potential target area to realize camouflaged moving target detection.The algorithm of this paper is verified based on a public data sofa video and test videos and compared with the five classic algorithms.The experimental results show that the proposed algorithm yields good results based on integrity,accuracy,and a number of objective evaluation indexes,and its overall performance is better than that of the compared algorithms. 展开更多
关键词 camouflage target detection moving target local contrast
在线阅读 下载PDF
A Mo LC+Mo M-based G^0 distribution parameter estimation method with application to synthetic aperture radar target detection
18
作者 朱正为 周建江 郭玉英 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2207-2217,共11页
The accuracy of background clutter model is a key factor which determines the performance of a constant false alarm rate(CFAR) target detection method. G0 distribution is one of the optimal statistic models in the syn... The accuracy of background clutter model is a key factor which determines the performance of a constant false alarm rate(CFAR) target detection method. G0 distribution is one of the optimal statistic models in the synthetic aperture radar(SAR) image background clutter modeling and can accurately model various complex background clutters in the SAR images. But the application of the distribution is greatly limited by its disadvantages that the parameter estimation is complex and the local detection threshold is difficult to be obtained. In order to solve the above-mentioned problems, an synthetic aperture radar CFAR target detection method using the logarithmic cumulant(Mo LC) + method of moment(Mo M)-based G0 distribution clutter model is proposed. In the method, G0 distribution is used for modeling the background clutters, a new Mo LC+Mo M-based parameter estimation method coupled with a fast iterative algorithm is used for estimating the parameters of G0 distribution and an exquisite dichotomy method is used for obtaining the local detection threshold of CFAR detection, which greatly improves the computational efficiency, detection performance and environmental adaptability of CFAR detection. Experimental results show that the proposed SAR CFAR target detection method has good target detection performance in various complex background clutter environments. 展开更多
关键词 synthetic aperture radar (SAR) target detection statistical modeling parameter estimation method of logarithmic cumulant (MoLC)
在线阅读 下载PDF
Target detection and recognition in SAR imagery based on KFDA
19
作者 Fei Gao Jingyuan Mei +3 位作者 Jinping Sun Jun Wang Erfu Yang Amir Hussain 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第4期720-731,共12页
Current research on target detection and recognition from synthetic aperture radar (SAR) images is usually carried out separately. It is difficult to verify the ability of a target recognition algorithm for adapting... Current research on target detection and recognition from synthetic aperture radar (SAR) images is usually carried out separately. It is difficult to verify the ability of a target recognition algorithm for adapting to changes in the environment. To realize the whole process of SAR automatic target recognition (ATR), es- pecially for the detection and recognition of vehicles, an algorithm based on kernel fisher discdminant analysis (KFDA) is proposed. First, in order to make a better description of the difference be- tween the background and the target, KFDA is extended to the detection part. Image samples are obtained with a dual-window approach and features of the inner and outer window samples are extracted by using KFDA. The difference between the features of inner and outer window samples is compared with a threshold to determine whether a vehicle exists. Second, for the target area, we propose an improved KFDA-IMED (image Euclidean distance) combined with a support vector machine (SVM) to recognize the vehicles. Experimental results validate the performance of our method. On the detection task, our proposed method obtains not only a high detection rate but also a low false alarm rate without using any prior information. For the recognition task, our method overcomes the SAR image aspect angle sensitivity, reduces the requirements for image preprocessing and improves the recogni- tion rate. 展开更多
关键词 synthetic aperture radar (SAR) target detection ker-nel fisher discriminant analysis (KFDA) target recognition imageEuclidean distance (IMED) support vector machine (SVM).
在线阅读 下载PDF
Dim Moving Small Target Detection by Local and Global Variance Filtering on Temporal Profiles in Infrared Sequences
20
作者 Chen Hao Liu Delian 《航空兵器》 CSCD 北大核心 2019年第6期43-49,共7页
In this paper, the temporal different characteristics between the target and background pixels are used to detect dim moving targets in the slow-evolving complex background. A local and global variance filter on tempo... In this paper, the temporal different characteristics between the target and background pixels are used to detect dim moving targets in the slow-evolving complex background. A local and global variance filter on temporal profiles is presented that addresses the temporal characteristics of the target and background pixels to eliminate the large variation of background temporal profiles. Firstly, the temporal behaviors of different types of image pixels of practical infrared scenes are analyzed.Then, the new local and global variance filter is proposed. The baseline of the fluctuation level of background temporal profiles is obtained by using the local and global variance filter. The height of the target pulse signal is extracted by subtracting the baseline from the original temporal profiles. Finally, a new target detection criterion is designed. The proposed method is applied to detect dim and small targets in practical infrared sequence images. The experimental results show that the proposed algorithm has good detection performance for dim moving small targets in the complex background. 展开更多
关键词 small target detection infrared image sequences complex background temporal profile variance filtering
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部