针对多视觉任务中传输成本高、解码端计算压力大的问题,提出一种自适应可伸缩视频编码(adaptive scalable video coding,ASVC)传输框架,将视频分为语义层和背景层,分别传输语义和背景信息。此外,提出一种自适应压缩算法,构建了C4.5决策...针对多视觉任务中传输成本高、解码端计算压力大的问题,提出一种自适应可伸缩视频编码(adaptive scalable video coding,ASVC)传输框架,将视频分为语义层和背景层,分别传输语义和背景信息。此外,提出一种自适应压缩算法,构建了C4.5决策树模型分析网络环境对视频进行压缩的决策判定,并对帧序列进行光流分析,在保留变化显著的帧基础上引入插值机制保持图像的平滑性。仿真结果表明,ASVC方法在不同码率环境下表现更高的识别精准率,视频质量和传输效率的显著提升。展开更多
为提高林业运输车辆的保险杠喷涂合格率,以某公司汽车保险杠的涂装质量数据为例,运用排列图对涂装质量数据进行分析得出颗粒、桔皮属于影响喷涂质量的主要因素。从人、机、料、法、环5个方面分析产生颗粒、桔皮的主要原因,并采用斯皮尔...为提高林业运输车辆的保险杠喷涂合格率,以某公司汽车保险杠的涂装质量数据为例,运用排列图对涂装质量数据进行分析得出颗粒、桔皮属于影响喷涂质量的主要因素。从人、机、料、法、环5个方面分析产生颗粒、桔皮的主要原因,并采用斯皮尔曼(Spearman)相关系数进行特征提取以及重要性分析,得出喷漆房的温度、喷漆房相对湿度、机器人喷涂流量、旋杯转速、喷涂距离、喷涂速度、漆的品牌、机器人(机器①、机器②、…、机器⑥)均会影响保险杠的喷涂质量。运用决策树(classification and regression tree,CART)算法确定喷涂流量、喷漆房的温度、喷漆房相对湿度、机器人②和机器人④、漆的品牌是影响保险杠喷涂质量的较为关键的因素。结果表明,利用CART分类算法对喷涂质量数据进行分析能够实现对故障点的判别,对于提高保险杠喷涂质量具有借鉴意义。展开更多
文摘针对多视觉任务中传输成本高、解码端计算压力大的问题,提出一种自适应可伸缩视频编码(adaptive scalable video coding,ASVC)传输框架,将视频分为语义层和背景层,分别传输语义和背景信息。此外,提出一种自适应压缩算法,构建了C4.5决策树模型分析网络环境对视频进行压缩的决策判定,并对帧序列进行光流分析,在保留变化显著的帧基础上引入插值机制保持图像的平滑性。仿真结果表明,ASVC方法在不同码率环境下表现更高的识别精准率,视频质量和传输效率的显著提升。
文摘为提高林业运输车辆的保险杠喷涂合格率,以某公司汽车保险杠的涂装质量数据为例,运用排列图对涂装质量数据进行分析得出颗粒、桔皮属于影响喷涂质量的主要因素。从人、机、料、法、环5个方面分析产生颗粒、桔皮的主要原因,并采用斯皮尔曼(Spearman)相关系数进行特征提取以及重要性分析,得出喷漆房的温度、喷漆房相对湿度、机器人喷涂流量、旋杯转速、喷涂距离、喷涂速度、漆的品牌、机器人(机器①、机器②、…、机器⑥)均会影响保险杠的喷涂质量。运用决策树(classification and regression tree,CART)算法确定喷涂流量、喷漆房的温度、喷漆房相对湿度、机器人②和机器人④、漆的品牌是影响保险杠喷涂质量的较为关键的因素。结果表明,利用CART分类算法对喷涂质量数据进行分析能够实现对故障点的判别,对于提高保险杠喷涂质量具有借鉴意义。