In order to provide relay communication supports for future Chinese lunar exploration program,Queqiao-2 relay communication satellite was developed.Queqiao-2 can perform scientific observations with three kinds of sci...In order to provide relay communication supports for future Chinese lunar exploration program,Queqiao-2 relay communication satellite was developed.Queqiao-2 can perform scientific observations with three kinds of scientific instruments on board.The system design of Queqiao-2,including mission orbit and transfer orbit design,configuration and layout design,housekeeping and information flow design,power supply and distribution design,GNC and propulsion system design,communication links design,etc.,was accomplished through comprehensive tradeoff and evaluation on technical maturity,availability,schedule,cost,and so on.With a view to reducing development risk,both the platform and relay communication payloads were developed based on significant heritage from previous Queqiao relay satellite and other relevant spacecraft.Queqiao-2 features flexible system architecture to support multiple frequencies,modulations,data rates and software reconfigurations to meet new user requirements.Subsequent to a successful launch on March 20,2024,by means of 5 orbit maneuvers,Queqiao-2 was inserted into a highly elliptical frozen mission orbit around the moon with a 24h period on schedule.Following on-orbit tests and calibrations,Queqiao-2 has possessed the capacity to provide reliable relay communication services to multiple lunar exploration missions,as well as the capacity to perform scientific observations.Under the support of Queqiao-2,Chang′e-6 achieved its ambitious mission goal to collect and return samples from the moon′s mysterious far side.In the meanwhile,Queqiao-2 has also paved the way for the following Chinese lunar exploration missions including Chang′e-7 and Chang′e-8.The design life time of Queqiao-2 is more than 8 years.Benefit from flexibility and extensibility of relay communication system design,it is convenient to provide relay communication services for future lunar exploration missions of both China and other countries.In addition,innovative scientific observations would be performed during the period that no relay communication task is arranged.The system design of Queqiao-2 reflects the development philosophy of technical innovations and inheritance integration.Based on highly flexible and extensible system architecture,multiple and concurrent relay communication mission requirements can be met.It can provide strong supports for future lunar exploration missions.Successful launching,orbit entering and on-orbit tests of Queqiao-2 verified the correct design principle and versatility.By means of Queqiao-2,more innovative scientific outcomes are anticipated and lunar exploration activities can be facilitated.展开更多
The network performance and the unmanned aerial vehicle(UAV)number are important objectives when UAVs are placed as communication relays to enhance the multi-agent information exchange.The problem is a non-determinist...The network performance and the unmanned aerial vehicle(UAV)number are important objectives when UAVs are placed as communication relays to enhance the multi-agent information exchange.The problem is a non-deterministic polynomial hard(NP-hard)multi-objective optimization problem,instead of generating a Pareto solution,this work focuses on considering both objectives at the same level so as to achieve a balanced solution between them.Based on the property that agents connected to the same UAV are a cluster,two clustering-based algorithms,M-K-means(MKM)and modified fast search and find density of peaks(MFSFDP)methods,are first proposed.Since the former algorithm requires too much computational time and the latter one requires too many relays,an algorithm for the balanced network performance and relay number(BPN)is proposed by discretizing the area to avoid missing the optimal relay positions and defining a new local density function to reflect the network performance metric.Simulation results demonstrate that the proposed algorithms are feasible and effective.Comparisons between these algorithms show that the BPN algorithm uses fewer relay UAVs than the MFSFDP and classic set-covering based algorithm,and its computational time is far less than the MKM algorithm.展开更多
This paper studies a multiple unmanned aerial vehicle(UAV)relaying communication system,where multiple UAV re-lays assist the blocked communication between a group of ground users(GUs)and a base station(BS).Since the ...This paper studies a multiple unmanned aerial vehicle(UAV)relaying communication system,where multiple UAV re-lays assist the blocked communication between a group of ground users(GUs)and a base station(BS).Since the UAVs only have limited-energy in practice,our design aims to maximize the energy efficiency(EE)through jointly designing the communica-tion scheduling,the transmit power allocation,as well as UAV trajectory under the buffer constraint over a given flight period.Actually,the formulated fractional optimization problem is diffi-cult to be solved in general because of non-convexity.To re-solve this difficulty,an efficient iterative algorithm is proposed based on the block coordinate descent(BCD)and successive convex approximation(SCA)techniques,as well as the Dinkel-bach’s algorithm.Specifically,the optimization variables of the formulated problem are divided into three blocks and we alter-nately optimize each block of the variables over iteration.Numeri-cal results verify the convergence of the proposed iterative al-gorithm and show that the proposed designs achieve significant EE gain,which outperform other benchmark schemes.展开更多
In this paper, a bit error ratio(BER)-based relay selection strategy is investigated under opportunistic relay selection.The challenging problem is to design the relay selection rule so that the relay is able to measu...In this paper, a bit error ratio(BER)-based relay selection strategy is investigated under opportunistic relay selection.The challenging problem is to design the relay selection rule so that the relay is able to measure the performance of the cooperative system at the destination exactly with low computation costs.This paper derives a closed-form expression of the end-to-end bit error rate firstly. Then, an approximate BER expression based on the relationship between the instantaneous signal-to-noise ratio(SNR) of the relay-to-destination link and the probability of error propagation is derived. Finally, a simplified relay selection formula is proposed. Simulation results prove that the proposed relay selection rule can reflect the BER of each relay properly as well.展开更多
文摘In order to provide relay communication supports for future Chinese lunar exploration program,Queqiao-2 relay communication satellite was developed.Queqiao-2 can perform scientific observations with three kinds of scientific instruments on board.The system design of Queqiao-2,including mission orbit and transfer orbit design,configuration and layout design,housekeeping and information flow design,power supply and distribution design,GNC and propulsion system design,communication links design,etc.,was accomplished through comprehensive tradeoff and evaluation on technical maturity,availability,schedule,cost,and so on.With a view to reducing development risk,both the platform and relay communication payloads were developed based on significant heritage from previous Queqiao relay satellite and other relevant spacecraft.Queqiao-2 features flexible system architecture to support multiple frequencies,modulations,data rates and software reconfigurations to meet new user requirements.Subsequent to a successful launch on March 20,2024,by means of 5 orbit maneuvers,Queqiao-2 was inserted into a highly elliptical frozen mission orbit around the moon with a 24h period on schedule.Following on-orbit tests and calibrations,Queqiao-2 has possessed the capacity to provide reliable relay communication services to multiple lunar exploration missions,as well as the capacity to perform scientific observations.Under the support of Queqiao-2,Chang′e-6 achieved its ambitious mission goal to collect and return samples from the moon′s mysterious far side.In the meanwhile,Queqiao-2 has also paved the way for the following Chinese lunar exploration missions including Chang′e-7 and Chang′e-8.The design life time of Queqiao-2 is more than 8 years.Benefit from flexibility and extensibility of relay communication system design,it is convenient to provide relay communication services for future lunar exploration missions of both China and other countries.In addition,innovative scientific observations would be performed during the period that no relay communication task is arranged.The system design of Queqiao-2 reflects the development philosophy of technical innovations and inheritance integration.Based on highly flexible and extensible system architecture,multiple and concurrent relay communication mission requirements can be met.It can provide strong supports for future lunar exploration missions.Successful launching,orbit entering and on-orbit tests of Queqiao-2 verified the correct design principle and versatility.By means of Queqiao-2,more innovative scientific outcomes are anticipated and lunar exploration activities can be facilitated.
基金the National Natural Science Foundation of China(61573285)。
文摘The network performance and the unmanned aerial vehicle(UAV)number are important objectives when UAVs are placed as communication relays to enhance the multi-agent information exchange.The problem is a non-deterministic polynomial hard(NP-hard)multi-objective optimization problem,instead of generating a Pareto solution,this work focuses on considering both objectives at the same level so as to achieve a balanced solution between them.Based on the property that agents connected to the same UAV are a cluster,two clustering-based algorithms,M-K-means(MKM)and modified fast search and find density of peaks(MFSFDP)methods,are first proposed.Since the former algorithm requires too much computational time and the latter one requires too many relays,an algorithm for the balanced network performance and relay number(BPN)is proposed by discretizing the area to avoid missing the optimal relay positions and defining a new local density function to reflect the network performance metric.Simulation results demonstrate that the proposed algorithms are feasible and effective.Comparisons between these algorithms show that the BPN algorithm uses fewer relay UAVs than the MFSFDP and classic set-covering based algorithm,and its computational time is far less than the MKM algorithm.
基金supported by the National Natural Science Foundation of China(61671474).
文摘This paper studies a multiple unmanned aerial vehicle(UAV)relaying communication system,where multiple UAV re-lays assist the blocked communication between a group of ground users(GUs)and a base station(BS).Since the UAVs only have limited-energy in practice,our design aims to maximize the energy efficiency(EE)through jointly designing the communica-tion scheduling,the transmit power allocation,as well as UAV trajectory under the buffer constraint over a given flight period.Actually,the formulated fractional optimization problem is diffi-cult to be solved in general because of non-convexity.To re-solve this difficulty,an efficient iterative algorithm is proposed based on the block coordinate descent(BCD)and successive convex approximation(SCA)techniques,as well as the Dinkel-bach’s algorithm.Specifically,the optimization variables of the formulated problem are divided into three blocks and we alter-nately optimize each block of the variables over iteration.Numeri-cal results verify the convergence of the proposed iterative al-gorithm and show that the proposed designs achieve significant EE gain,which outperform other benchmark schemes.
基金supported by the Pre-Research Foundation of China。
文摘In this paper, a bit error ratio(BER)-based relay selection strategy is investigated under opportunistic relay selection.The challenging problem is to design the relay selection rule so that the relay is able to measure the performance of the cooperative system at the destination exactly with low computation costs.This paper derives a closed-form expression of the end-to-end bit error rate firstly. Then, an approximate BER expression based on the relationship between the instantaneous signal-to-noise ratio(SNR) of the relay-to-destination link and the probability of error propagation is derived. Finally, a simplified relay selection formula is proposed. Simulation results prove that the proposed relay selection rule can reflect the BER of each relay properly as well.