Nonparametric time-of-arrival(TOA) estimators for impulse radio ultra-wideband(IR-UWB) signals are proposed. Nonparametric detection is obviously useful in situations where detailed information about the statistic...Nonparametric time-of-arrival(TOA) estimators for impulse radio ultra-wideband(IR-UWB) signals are proposed. Nonparametric detection is obviously useful in situations where detailed information about the statistics of the noise is unavailable or not accurate. Such TOA estimators are obtained based on conditional statistical tests with only a symmetry distribution assumption on the noise probability density function. The nonparametric estimators are attractive choices for low-resolution IR-UWB digital receivers which can be implemented by fast comparators or high sampling rate low resolution analog-to-digital converters(ADCs),in place of high sampling rate high resolution ADCs which may not be available in practice. Simulation results demonstrate that nonparametric TOA estimators provide more effective and robust performance than typical energy detection(ED) based estimators.展开更多
One of the main problems facing accurate location in wireless communication systems is non-line-of- sight (NLOS) propagation. Traditional location algorithms are based on classical techniques under minimizing a leas...One of the main problems facing accurate location in wireless communication systems is non-line-of- sight (NLOS) propagation. Traditional location algorithms are based on classical techniques under minimizing a least-squares objective function and it loses optimality when the NLOS error distribution deviates from Gaussian distribution. An effective location algorithm based on a robust objective function is proposed to mitigate NLOS errors. The proposed method does not require the prior knowledge of the NLOS error distribution and can give a closed-form solution. A comparison is performed in different NLOS environments between the proposed algorithm and two additional ones (LS method and Chan's method with an NLOS correction). The proposed algorithm clearly outperforms the other two.展开更多
基金supported by the National High Technology Research and Development Program of China(863 Program)(2009AA011204)
文摘Nonparametric time-of-arrival(TOA) estimators for impulse radio ultra-wideband(IR-UWB) signals are proposed. Nonparametric detection is obviously useful in situations where detailed information about the statistics of the noise is unavailable or not accurate. Such TOA estimators are obtained based on conditional statistical tests with only a symmetry distribution assumption on the noise probability density function. The nonparametric estimators are attractive choices for low-resolution IR-UWB digital receivers which can be implemented by fast comparators or high sampling rate low resolution analog-to-digital converters(ADCs),in place of high sampling rate high resolution ADCs which may not be available in practice. Simulation results demonstrate that nonparametric TOA estimators provide more effective and robust performance than typical energy detection(ED) based estimators.
基金the National Natural Science Foundation of China (60372022)Program for New Century Excellent Talent Support Plan of China (NCET 05-0806).
文摘One of the main problems facing accurate location in wireless communication systems is non-line-of- sight (NLOS) propagation. Traditional location algorithms are based on classical techniques under minimizing a least-squares objective function and it loses optimality when the NLOS error distribution deviates from Gaussian distribution. An effective location algorithm based on a robust objective function is proposed to mitigate NLOS errors. The proposed method does not require the prior knowledge of the NLOS error distribution and can give a closed-form solution. A comparison is performed in different NLOS environments between the proposed algorithm and two additional ones (LS method and Chan's method with an NLOS correction). The proposed algorithm clearly outperforms the other two.