Aging is an inevitable biological phenomenon that involves a multitude of physiological alterations.Dietary interventions are being considered as potential strategies for delaying age-related dysfunction.Unsaponifiabl...Aging is an inevitable biological phenomenon that involves a multitude of physiological alterations.Dietary interventions are being considered as potential strategies for delaying age-related dysfunction.Unsaponifiable matter(USM),a composition of highly active ingredients found in walnut oil,has demonstrated antioxidant effects.This study aims to explore the neuroprotective effects of USM on d-galactose-treated C57BL/6 mice and elucidate its underlying mechanism,which was validated in PC12 cells treated with d-galactose.The results of behavioral tests demonstrated that USM significantly improved cognitive deficits associated with aging.The morphological analysis demonstrated that USM effectively alleviated hippocampal neuronal damage,synaptic impairment,and mitochondrial dysfunction induced by d-galactose.Furthermore,USM significantly increases the antioxidant enzymes activity while reducing the malondialdehyde and reactive oxygen species levels.The results suggest that USM can mitigate age-related symptoms caused by d-galactose by activating the nuclear factor erythroid-2-related factor 2 signaling pathway,which enhances the expression of antioxidant enzymes,restore redox balance,and improves synaptic and mitochondrial functions.This has a positive on improving cognition and memory disorders in elderly mice.展开更多
Type 2 diabetes mellitus(T2DM)is a complex metabolic disease threatening human health.We investigated the effects of Tegillarca granosa polysaccharide(TGP)and determined its potential mechanisms in a mouse model of T2...Type 2 diabetes mellitus(T2DM)is a complex metabolic disease threatening human health.We investigated the effects of Tegillarca granosa polysaccharide(TGP)and determined its potential mechanisms in a mouse model of T2DM established through a high-fat diet and streptozotocin.TGP(5.1×10^(3) Da)was composed of mannose,glucosamine,rhamnose,glucuronic acid,galactosamine,glucose,galactose,xylose,and fucose.It could significantly alleviate weight loss,reduce fasting blood glucose levels,reverse dyslipidemia,reduce liver damage from oxidative stress,and improve insulin sensitivity.RT-PCR and Western blotting indicated that TGP could activate the phosphatidylinositol-3-kinase/protein kinase B signaling pathway to regulate disorders in glucolipid metabolism and improve insulin resistance.TGP increased the abundance of Allobaculum,Akkermansia,and Bifidobacterium,restored the microbiota abundance in the intestinal tracts of mice with T2DM,and promoted short-chain fatty acid production.This study provides new insights into the antidiabetic effects of TGP and highlights its potential as a natural hypoglycemic nutraceutical.展开更多
Recent clinical and experimental studies have confirmed the effects of Xinfuli Granule (XG), a compound Chinese medicine in the prevention and treatment of heart failure (HF). This study aimed to investigate the effec...Recent clinical and experimental studies have confirmed the effects of Xinfuli Granule (XG), a compound Chinese medicine in the prevention and treatment of heart failure (HF). This study aimed to investigate the effects and the mechanisms of XG on ventricular reconstruction in rats with acute myocardial infarction (AMI).MethodsSprague-Dawley rats were subjected to left anterior descending branch ligation. The rats that survived 24 h were randomly assigned to five groups: medium-dose of XG group (MI+XGM), high-dose of XG group (MI+XGH), carvedilol group (MI+C), medium-dose of XG + carvedilol group (MI+C+XGM). Fourteen rats underwent identical surgical procedures without artery ligation, serving as sham controls. At 28 days, left ventricular weight to body weight (LVW/BW) and heart weight to body weight (HW/BW) were calculated; left ventricular ejection fraction (LVEF), left ventricular shortening fraction (LVFS), left ventricular internal diameter at systole (LVIDS) were measured by ultrasound; HE staining, Masson staining, and Sirius red staining were used to assess the myocardial pathological and physiological changes as well as myocardial fibrosis area and non-infarct zone I/III collagen ratio. Expression of Smad3 were detected and analyzed by Western blot, immunohistochemistry and immunofluorescence. P-Smad3, Smad2 and Smad7 in the TGF-β/Smads signaling pathway were also analyzed by Western blot.ResultsThe LVIDS (P < 0.01), HW/BW (P < 0.05), type I/III collagen ratio (P < 0.01) and myocardial collagen (P < 0.01) decreased significantly while the LVW/BW, LVFS (P < 0.05) increased significantly in MI+XGM group as compared with those in other groups. The expression of key signal molecules of the TGF-β/Smads signaling pathway, including Smad3, P-Smad3 and Smad2 protein were decreased, while the expression of Smad7 increased in both XG and carvedilol treatment groups as compared to those of the MI group (all P < 0.01). Immunohistochemistry and immunofluorescence further confirmed the down-regulated Smad3 expression.ConclusionXG can improve ventricular reconstruction and inhibit myocardial fibrosis in rats with AMI by regulating TGF-β/Smads signaling pathway.展开更多
Hepatocellular carcinoma(HCC)is one of the common most malignant tumors.This study aimed to determine the in vitro and in vivo anticancer activity of cordycepin and elucidate its mechanism of action.The results of in ...Hepatocellular carcinoma(HCC)is one of the common most malignant tumors.This study aimed to determine the in vitro and in vivo anticancer activity of cordycepin and elucidate its mechanism of action.The results of in vitro and in vivo studies revealed that cordycepin inhibited proliferation and migration in HepG-2 cells and inhibited the growth of HepG-2 xenograft-bearing nude mice by inducing apoptosis.Transcriptome sequencing analysis revealed a total of 403 differential genes,which revealed that cordycepin may play an anti-HCC role by regulating Hippo signaling pathway.The regulatory effects of cordycepin on the Hippo signaling pathway was further investigated using a YAP1 inhibitor.The results demonstrated that cordycepin upregulated the expression of MST1 and LAST1,and subsequently inhibited YAP1,which activated the Hippo signaling pathway.This in turn downregulated the expression of GBP3 and ETV5,and subsequently inhibited cell proliferation and migration.Additionally,YAP1 regulated the expression of Bax and Bcl-2,regulated the mitochondrial apoptotic pathway,and induced apoptosis by upregulating the expression of the caspase-3 protein.In summary,this study reveals that cordycepin exerts its anti-hepatocarcinoma effect through regulating Hippo signaling pathway,and GBP3 and ETV5 may be potential therapeutic targets for hepatocarcinoma.展开更多
Obesity,caused by excessive energy,leads to body weight gain and various diseases,including cognitive impairment.Current studies suggest that diet restriction such as optimal fasting and regular exercise are crucial f...Obesity,caused by excessive energy,leads to body weight gain and various diseases,including cognitive impairment.Current studies suggest that diet restriction such as optimal fasting and regular exercise are crucial for improving cognitive capacity.However,further exploration is needed to understand the specific mechanisms of high fat diet(HFD)-induced cognitive decline in obesity.In the present study,4-month-old mice were subjected to HFD feeding for 18 weeks,followed by aerobic exercise and high-intensity intermittent exercise,regular diet feeding,and intermittent fasting for 8 weeks,and then used to evaluate cognitive capacity,inflammation,compromised insulin signaling pathway,and apoptosis in hippocampal tissue,as well as AMPK/SIRT1 and TLR4 signal pathways.Obese mice revealed impaired cognitive capacity as compared with mice fed with regular diets.In contrast,aerobic exercise,high-intensity intermittent exercise,regular diet,and intermittent fasting could inhibit apoptosis caused by inflammation-mediated compromised insulin signaling pathway in hippocampal tissues through activating the AMPK/SIRT1 signal pathway and suppressing the TLR4 signal pathway,thereby rescuing the cognitive impairment of obese mice.Therefore,diet restriction and exercise interventions may play a positive role in reverting obesity-induced cognitive impairment.展开更多
Hyperoside and quercetin are similar in molecular structures.In this study,the antioxidant regulatory targets of hyperoside and quercetin are mainly in the nuclear factor(erythroid-2-derived)-related factor 2(Nrf2)pat...Hyperoside and quercetin are similar in molecular structures.In this study,the antioxidant regulatory targets of hyperoside and quercetin are mainly in the nuclear factor(erythroid-2-derived)-related factor 2(Nrf2)pathway predicted by network pharmacology.And the antioxidant effect and mechanism of hyperoside and quercetin were measured and compared in H_(2)O_(2)-induced Hep G2 cells and Caenorhabditis elegans.The findings indicated that quercetin was more effective than hyperoside in reducing oxidative damage,which was proved by improved cell viability,decreased reactive oxygen species(ROS)production,decreased cellular apoptosis,and alleviated mitochondrial damage.In addition,quercetin was more efficient than hyperoside in enhancing the expression of Nrf2-associated m RNAs,increasing the activities of superoxide dismutase(SOD),glutathione peroxidase(GSH-Px),and catalase(CAT),and reducing the cellular malondialdehyde(MDA)content.Quercetin was superior to hyperoside in prolonging the lifespan of worms,decreasing the accumulation of lipofuscin,inhibiting ROS production,and increasing the proportion of skn-1 in the nucleus.With the Nrf2 inhibitor ML385,we verified that quercetin and hyperoside primarily protected the cells against oxidative damage via the Nrf2 signalling pathway.Furthermore,molecular docking and dynamics simulations demonstrated that the quercetin-Kelch-like ECH-associated protein 1(Keap1)complex was more stable than the hyperoside-Keap1 complex.The stable structure of the complex might hinder the binding of Nrf2 and Keap1 to release Nrf2 and facilitate its entry into the nucleus to play an antioxidant role.Overall,quercetin had a better antioxidant than hyperoside.展开更多
Naringin exists in a wide range of Chinese herbal medicine and has proven to possess several pharmacological properties.In this study,PC12,HepG2 cells,and female Drosophila melanogaster were used to investigate the an...Naringin exists in a wide range of Chinese herbal medicine and has proven to possess several pharmacological properties.In this study,PC12,HepG2 cells,and female Drosophila melanogaster were used to investigate the antioxidative and anti-aging effects of naringin and explore the underlying mechanisms.The results showed that naringin inhibited H_(2)O_(2)-induced decline in cell viability and decreased,the content of reactive oxygen species in cells.Meanwhile,naringin prolonged the lifespan of flies,enhanced the abilities of climbing and the resistance to stress,improved the activities of antioxidant enzymes,and decreased malondialdehyde content.Naringin also improved intestinal barrier dysfunction and reduced abnormal proliferation of intestinal stem cells.Moreover,naringin down-regulated the mRNA expressions of inr,chico,pi 3k,and akt-1,and up-regulated the mRNA expressions of dilp2,dilp3,dilp5,and foxo,thereby activating autophagy-related genes and increasing the number of lysosomes.Furthermore,the mutant stocks assays and computer molecular simulation results further indicated that naringin delayed aging by inhibiting the insulin signaling(IIS)pathway and activating the autophagy pathway,which was consistent with the result of network pharmacological predictions.展开更多
Objective To determine whether transforming growth factor betal (TGF-β1)/Smad signaling pathway mediates p53-dependent apoptosis in hepatoma cell lines.Methods Three human hepatic carcinoma cell lines, HepG2, Huh-7, ...Objective To determine whether transforming growth factor betal (TGF-β1)/Smad signaling pathway mediates p53-dependent apoptosis in hepatoma cell lines.Methods Three human hepatic carcinoma cell lines, HepG2, Huh-7, and Hep3B, were used in this study.TGF-β1-induced apoptosis in hepatic carcinoma cell lines was analyzed using TUNEL assay.For identifying the mechanism of apoptosis induced by TGF-β1, cell lines were transfected with a TGF-β1-inducible luciferase reportor plasmid containing Smad4 binding elements.After transfection, cells were treated with TGF-β1, then assayed for luciferase activity.Results The apoptosis rate of HepG2 cell lines (48.51%± 8.21%) was significantly higher than control ( 12.72%±2.18%, P<0.05).But TGF-β1 was not able to induce apoptosis of Huh-7 and Hep3B cell lines.The relative luciferase activity of TGF-β1-treated HepG2 cell lines (4.38) was significantly higher than control (1.00, P< 0.05).But the relative luciferase activity of TGF-β1-treated Huh-7 and Hep3B cell lines less increased compared with control.Conclusions HepG2 cells seem to be highly susceptible to TGF-β1-induced apoptosis compared with Hep3B and Huh-7 cell lines.Smad4 is a central mediator of TGF-β1 signaling transdution pathway.TGF-β1/Smad signaling pathway might mediate p53-dependent apoptosis in hepatoma cell lines.展开更多
Advanced lipoxidation end products(ALEs)are formed by modifying proteins with lipid oxidation products.ALEs formed in the body have been linked to diabetes and hepatic disease.However,it is not known whether ALEs form...Advanced lipoxidation end products(ALEs)are formed by modifying proteins with lipid oxidation products.ALEs formed in the body have been linked to diabetes and hepatic disease.However,it is not known whether ALEs formed in heat-processed foods can induce metabolic diseases.Our results indicate that dietary ALEs induce lipid accumulation in the liver of mice at an early stage and continuous feeding of ALEs induces inflammation,oxidative stress and hepatic insulin resistance.The core reason for these adverse reactions is the damage to the intestinal barrier caused by ALEs.Due to the damage to the intestinal barrier,there is an increase in lipopolysaccharides(LPS)in the liver that induces hepatic lipid accumulation by modulating hepatic lipid metabolism.Furthermore,ALEs plays a major role in the regulation of metabolic diseases by directly or indirectly inhibiting AMP activated protein kinase(AMPK)/Sirtuin 1(SIRT1)signaling through LPS.展开更多
Two immunomodulatory polysaccharides(Vp2a-Ⅱ and Vp3) were isolated and identified from Apocynum venetum L. flowers, and their innate immune-stimulating functions and working mechanisms were evaluated in RAW264.7 cell...Two immunomodulatory polysaccharides(Vp2a-Ⅱ and Vp3) were isolated and identified from Apocynum venetum L. flowers, and their innate immune-stimulating functions and working mechanisms were evaluated in RAW264.7 cells. Both the level of released nitric oxide(NO) and expression of inducible nitric oxide synthase(iNOS) m RNA were significantly enhanced in the RAW264.7 macrophages cells treated by Vp2a-Ⅱ and Vp3. Vp2a-Ⅱ(100–800 μg/m L) and Vp3(400 μg/mL) could significantly increase the phagocytic activity of RAW264.7 cells and the secretion and m RNA expression of TNF-α and IL-6 in a concentrationdependent manner through affecting mitogen-activated protein kinase(MAPK) activity and nuclear factor κB(NF-κB) nuclear translocation. Vp2a-Ⅱ might activate the MAPK signaling pathways and induce the nuclear translocation of NF-κB p65, whilst Vp3 likely activated the NF-κB and MAPK signaling pathways without influencing the p38 MAPK route.展开更多
Background Homocysteine(Hcy)is a risk factor for hypertension,although the mechanisms are poorly understood.Methods We first explored the relationship between Hcy levels and blood pressure(BP)by analyzing the clinical...Background Homocysteine(Hcy)is a risk factor for hypertension,although the mechanisms are poorly understood.Methods We first explored the relationship between Hcy levels and blood pressure(BP)by analyzing the clinical data of primary hypertensive patients admitted to our hospital.Secondly,we explored a rat model to study the effect of Hcy on blood pressure and the role of H2S.An hyperhomocysteinemia(HHcy)rat model was induced to explore the effect of Hcy on blood pressure and the possible mechanism.We carried out tissue histology,extraction and examination of RNA and protein.Finally,we conducted cell experiments to determine a likely mechanism through renin-angiotensin-aldosterone system(RAAS)and extracellular signal-regulated kinase 1/2(ERK1/2)signaling pathway.Results In primary hypertensive inpatients with HHcy,blood pressure was significantly higher as compared with inpatient counterparts lacking HHcy.In the rat model,blood pressure of the Wistar rats was significantly increased with increases in serum Hcy levels and decreased after folate treatment.Angiotensin converting enzyme 1(ACE1)expression in the Wistar Hcy group was enhanced comparing to controls,but was decreased in the Wistar folate group.Angiotensin II receptor type 1(AGTR1)levels in the kidney tissue increased in the Wistar folate group.Both serum H2S and kidney cystathionineγ-lyase decreased with elevated levels of serum Hcy.In vitro,increased concentrations and treatment times for Hcy were associated with increased expression of collagen type 1 and AGTR1.This dose and time dependent response was also observed for p-STAT3 and p-ERK1/2 expression.Conclusion Endogenous H2S might mediate the process of altered blood pressure in response to changes in serum Hcy levels,in a process that is partly dependent on activated RAAS and ERK1/2-STAT3 signaling pathway.展开更多
Inflammatory bowel disease(IBD)is a chronic inflammatory lesion of the intestine,mainly manifested by infiltration of intestinal inflammatory cells and imbalance of gut microbiota.Conventional treatments for IBD inclu...Inflammatory bowel disease(IBD)is a chronic inflammatory lesion of the intestine,mainly manifested by infiltration of intestinal inflammatory cells and imbalance of gut microbiota.Conventional treatments for IBD include antibiotics,immunosuppressive agents,5-aminosalicylic acid,steroids and surgery,which have high toxic side effects.Resveratrol is a natural polyphenol,and its various derivatives have anti-oxidation and anti-inflammatory properties.In this paper,we comprehensively review the mechanism of resveratrol and its derivates to alleviate IBD by improving intestinal barrier,regulating the unbalanced gut microbiota,and targeting various inflammatory signaling pathways.展开更多
Antioxidant peptides have been widely reported.However,only a few reports have been published examining the antioxidant peptides derived from Chinese baijiu.In this study,6 novel peptides derived from Chinese baijiu w...Antioxidant peptides have been widely reported.However,only a few reports have been published examining the antioxidant peptides derived from Chinese baijiu.In this study,6 novel peptides derived from Chinese baijiu were identified successfully using high-performance liquid chromatography-quadrupoletime-of-flight mass spectrometry(HPLC-QTOF-MS)with a concentration of 0.835–24.540μg/L.The underlying molecular mechanisms were investigated,and their cytoprotective effects were examined against 2,2’-azobis(2-methylpropanimidamidine)dihydrochloride(AAPH)-induced oxidative stress in Hep G2 cells.The results showed that these peptides exerted protective effects by suppressing reactive oxygen species(ROS)generation,preventing malondialdehyde(MDA)formation,and upregulating cellular antioxidant enzyme activities(SOD,CAT,and GSH-Px)in a dose-dependent manner.Further experiments proved that these peptides exerted antioxidant effects via Nrf2/ARE-mediated signaling pathway by promoting Nrf2 nuclear translocation,inhibiting ubiquitination,and enhancing transcription capacity of Nrf2 in Hep G2 cells.These findings provide the molecular basis for the effects of antioxidant peptides derived from Chinese baijiu,which is important for a deeper understanding of the relationship between human health and moderate drinking.展开更多
Insulin resistance(IR) has been considered to be an important causative factor of metabolic syndrome(Met S). The present study investigated whether pomegranate peel polyphenols(PPPs) could prevent the development of M...Insulin resistance(IR) has been considered to be an important causative factor of metabolic syndrome(Met S). The present study investigated whether pomegranate peel polyphenols(PPPs) could prevent the development of Met S by improving IR in rats. Male Sprague-Dawley(SD) rats were fed high fat diet(HFD) to induce Met S and supplemented with different dosages of PPPs for 12 weeks. The results showed that HFD-induced insulin resistant rats had disordered metabolism of blood glucose, blood lipid, and terrible muscle fiber morphology when compared with normal diet-fed rats, but PPPs treatment at a dosage of 300 mg/kg·day significantly reversed these negative effects. Moreover, in skeletal muscle tissue of insulin resistant rats, PPPs treatments significantly increased the protein expressions of insulin receptor(Ins R) and phosphorylated insulin receptor substrate 1(IRS-1), stimulated peroxisome proliferator activated receptor gamma(PPARγ) and phosphoinositide 3-kinase(PI3K)/protein kinase B(AKT/PKB) signaling pathway, and aggrandized the protein levels of phosphorylated glycogen synthase kinase-3β(GSK-3β) and glucose transporter 4(GLUT4). Our results suggest that PPPs possess of the beneficial effects on alleviating IR by enhancing insulin sensitivity and regulating glucose metabolism.展开更多
BACKGROUND:Calcium calmodulin-dependent kinase II(CaMKII) can be more active in patients with left ventricular hypertrophy(LVH),which in turn causes phosphorylation of ryanodine receptors,resulting in inactivation and...BACKGROUND:Calcium calmodulin-dependent kinase II(CaMKII) can be more active in patients with left ventricular hypertrophy(LVH),which in turn causes phosphorylation of ryanodine receptors,resulting in inactivation and the instability of intracellular calcium homeostasis.The present study aimed to determine the effect of CaMKII-ryanodine receptor pathway signaling in rabbits with left ventricular hypertrophy and triggered ventricular arrhythmia.METHODS:Forty New Zealand rabbits were randomized into four groups(10 per group):sham group,LVH group,KN-93 group(LVH+KN-93),and ryanodine group(LVH+ryanodine).Rabbits in the LVH,KN-93,and ryanodine groups were used to establish a left ventricular hypertrophy model by the coarctation of the abdominal aorta,while those in the sham group did not undergo the coarctation.After eight weeks,action potentials(APs) were recorded simultaneously in the endocardium and epicardium,and a transmural electrocardiogram(ECG) was also recorded in the rabbit left ventricular wedge model.Drugs were administered to the animals in the KN-93 and ryanodine groups,and the frequency of triggered APs and ventricular tachycardia was recorded after the rabbits were given isoprenaline(1 μmol/L) and high-frequency stimulation.RESULTS:The frequency(animals/group) of triggered APs was 0/10 in the sham group,10/10 in the LVH group,4/10 in the KN-93 group,and 1/10 in the ryanodine group.The frequencies of ventricular tachycardia were 0/10,9/10,3/10,and 1/10,respectively.The frequencies of polymorphic ventricular tachycardia or ventricular fibrillation were 0/10,7/10,2/10,and 1/10,respectively.The frequencies of triggered ventricular arrhythmias in the KN-93 and ryanodine groups were much lower than those in the LVH group(P<0.05).CONCLUSIONS:KN-93 and ryanodine can effectively reduce the occurrence of triggered ventricular arrhythmia in rabbits with LVH.The CaMKII-ryanodine signaling pathway can be used as a new means of treating ventricular arrhythmia.展开更多
Dietary flavonoids are abundant in natural plants and possess multiple pharmacological and nutritional activities.In this study,apigenin,luteolin,and baicalein were chosen to evaluate their anti-diabetic effect in hig...Dietary flavonoids are abundant in natural plants and possess multiple pharmacological and nutritional activities.In this study,apigenin,luteolin,and baicalein were chosen to evaluate their anti-diabetic effect in high-glucose and dexamethasone induced insulin-resistant(IR)HepG2 cells.All flavonoids improves the glucose consumption and glycogen synthesis abilities in IR-HepG2 cells via activating glucose transporter protein 4(GLUT4)and phosphor-glycogen synthase kinase(GSK-3β).These fl avonoids signifi cantly inhibited the production of reactive oxygen species(ROS)and advanced glycation end-products(AGEs),which were closely related to the suppression of the phosphorylation form of NF-κB and P65.The expression levels of insulin receptor substrate-1(IRS-1),insulin receptor substrate-2(IRS-2)and phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt)pathway in IR-HepG2 cells were all partially activated by the fl avonoids,with variable effects.Furthermore,the intracellular metabolic conditions of the fl avonoids were also evaluated.展开更多
We evaluated the effect of isoquercetin(quercetin-O-3-glucoside-quercetin,IQ)as a functional component of Abeliophyllum disistichum Nakai ethanol extract(ADLE)on prostate cell proliferation and apoptosis and its effec...We evaluated the effect of isoquercetin(quercetin-O-3-glucoside-quercetin,IQ)as a functional component of Abeliophyllum disistichum Nakai ethanol extract(ADLE)on prostate cell proliferation and apoptosis and its effects on the IGF-1/PI3K/Akt/mTOR pathway in benign prostatic hyperplasia(BPH).Metabolites in ADLE were analyzed using UHPLC-qTOF-MS and HPLC.IQ was orally administered(1 or 10 mg/kg)to a testosterone propionate-induced BPH rat model,and its effects on the prostate weight were evaluated.The effect of IQ on androgen receptor(AR)signaling was analyzed in LNCaP cells.Whether IGF-1 and IQ affect the IGF-1/PI3K/Akt/mTOR pathway in BPH-1 cells was also examined.The metabolites in ADLE were identified and quantified,which confirmed that ADLE contained abundant IQ(20.88 mg/g).IQ significantly reduced the prostate size in a concentration-dependent manner in a BPH rat model,and significantly decreased the expression of AR signaling factors in the rat prostate tissue and LNCaP cells in a concentration-dependent manner.IQ also inhibited the PI3K/AKT/mTOR pathway activated by IGF-1 treatment in BPH-1 cells.In BPH-1 cells,IQ led to G0/G1 arrest and suppressed the expression of proliferation factors while inducing apoptosis.Thus,IQ shows potential for use as a pharmaceutical and nutraceutical for BPH.展开更多
Giant cell arteritis(GCA)is a commonly occurring large vacuities characterized by angiopathy of medium and large-sized vessels.GCA granulomatous formation plays an important role in the pathogenesis of GCA.Analysis of...Giant cell arteritis(GCA)is a commonly occurring large vacuities characterized by angiopathy of medium and large-sized vessels.GCA granulomatous formation plays an important role in the pathogenesis of GCA.Analysis of T cell lineages and signaling pathways in GCA have revealed the essential role of T cells in the pathology of GCA.T cells are the dominant population present in GCA lesions.CD4+T cell subtypes that are present include Th1,Th2,Th9,Th17,follicular helper T(Tfh)cells,and regulatory T(Treg)cells.CD8 T cells can primarily differentiate into cytotoxic CD8+T lymphocytes and Treg cells.The instrumental part of GCA is the interplay between dendritic cells,macrophages and endothelial cells,which can result in the vascular injury and the characteristics granulomatous infiltrates formation.During the inflammatory loop of GCA,several signaling pathways have been reported to play an essential role in recruiting,activating and differentiating T cells,including T-cell receptor(TCR)signaling,vascular endothelial growth factor(VEGF)-Jagged-Notch signaling and the Janus kinase and signal transducer and activator of transcription(STAT)pathway(JAK-STAT)pathway.In this review,we have focused on the role of T cells and their potential signaling mechanism(s)that are involved in the pathogenesis of GCA.A better understanding of the role of T cells mediated complicated orchestration during the homeostasis and the changes could possibly favor developments of novel treatment strategies against immunological disorders associated with GCA.展开更多
Vaccinations are essential for preventing and treating disease,especially cancer nanovaccines,which have gained considerable interest recently for their strong anti-tumor immune capabilities.Vaccines can prompt the im...Vaccinations are essential for preventing and treating disease,especially cancer nanovaccines,which have gained considerable interest recently for their strong anti-tumor immune capabilities.Vaccines can prompt the immune system to generate antibodies and activate various immune cells,leading to a response against tumor tissues and reducing the negative effects and recurrence risks of traditional chemotherapy and surgery.To enhance the flexibility and targeting of vaccines,nanovaccines utilize nanotechnology to encapsulate or carry antigens at the nanoscale level,enabling more controlled and precise drug delivery to enhance immune responses.Cancer nanovaccines function by encapsulating tumor-specific antigens or tumor-associated antigens within nanomaterials.The small size of these nanomaterials allows for precise targeting of T cells,dendritic cells,or cancer cells,thereby eliciting a more potent anti-tumor response.In this paper,we focus on the classification of carriers for cancer nanovaccines,the roles of different target cells,and clinically tested cancer nanovaccines,discussing strategies for effectively inducing cytotoxic T lymphocytes responses and optimizing antigen presentation,while also looking ahead to the translational challenges of moving from animal experiments to clinical trials.展开更多
基金supported by the National Key Research and Development Program(2022YFD1600402)Hebei Provincial Major Science and Technology Achievement Transformation Project(21287101Z)Hebei Provincial Innovation and Entrepreneurship Team Project(215A7102D)。
文摘Aging is an inevitable biological phenomenon that involves a multitude of physiological alterations.Dietary interventions are being considered as potential strategies for delaying age-related dysfunction.Unsaponifiable matter(USM),a composition of highly active ingredients found in walnut oil,has demonstrated antioxidant effects.This study aims to explore the neuroprotective effects of USM on d-galactose-treated C57BL/6 mice and elucidate its underlying mechanism,which was validated in PC12 cells treated with d-galactose.The results of behavioral tests demonstrated that USM significantly improved cognitive deficits associated with aging.The morphological analysis demonstrated that USM effectively alleviated hippocampal neuronal damage,synaptic impairment,and mitochondrial dysfunction induced by d-galactose.Furthermore,USM significantly increases the antioxidant enzymes activity while reducing the malondialdehyde and reactive oxygen species levels.The results suggest that USM can mitigate age-related symptoms caused by d-galactose by activating the nuclear factor erythroid-2-related factor 2 signaling pathway,which enhances the expression of antioxidant enzymes,restore redox balance,and improves synaptic and mitochondrial functions.This has a positive on improving cognition and memory disorders in elderly mice.
基金funded by the National Key Research and Development Program of China(2020YFD0900902)Zhejiang Province Public Welfare Technology Application Research Project(LGJ21C20001)Zhejiang Provincial Key Research and Development Project of China(2019C02076 and 2019C02075)。
文摘Type 2 diabetes mellitus(T2DM)is a complex metabolic disease threatening human health.We investigated the effects of Tegillarca granosa polysaccharide(TGP)and determined its potential mechanisms in a mouse model of T2DM established through a high-fat diet and streptozotocin.TGP(5.1×10^(3) Da)was composed of mannose,glucosamine,rhamnose,glucuronic acid,galactosamine,glucose,galactose,xylose,and fucose.It could significantly alleviate weight loss,reduce fasting blood glucose levels,reverse dyslipidemia,reduce liver damage from oxidative stress,and improve insulin sensitivity.RT-PCR and Western blotting indicated that TGP could activate the phosphatidylinositol-3-kinase/protein kinase B signaling pathway to regulate disorders in glucolipid metabolism and improve insulin resistance.TGP increased the abundance of Allobaculum,Akkermansia,and Bifidobacterium,restored the microbiota abundance in the intestinal tracts of mice with T2DM,and promoted short-chain fatty acid production.This study provides new insights into the antidiabetic effects of TGP and highlights its potential as a natural hypoglycemic nutraceutical.
文摘Recent clinical and experimental studies have confirmed the effects of Xinfuli Granule (XG), a compound Chinese medicine in the prevention and treatment of heart failure (HF). This study aimed to investigate the effects and the mechanisms of XG on ventricular reconstruction in rats with acute myocardial infarction (AMI).MethodsSprague-Dawley rats were subjected to left anterior descending branch ligation. The rats that survived 24 h were randomly assigned to five groups: medium-dose of XG group (MI+XGM), high-dose of XG group (MI+XGH), carvedilol group (MI+C), medium-dose of XG + carvedilol group (MI+C+XGM). Fourteen rats underwent identical surgical procedures without artery ligation, serving as sham controls. At 28 days, left ventricular weight to body weight (LVW/BW) and heart weight to body weight (HW/BW) were calculated; left ventricular ejection fraction (LVEF), left ventricular shortening fraction (LVFS), left ventricular internal diameter at systole (LVIDS) were measured by ultrasound; HE staining, Masson staining, and Sirius red staining were used to assess the myocardial pathological and physiological changes as well as myocardial fibrosis area and non-infarct zone I/III collagen ratio. Expression of Smad3 were detected and analyzed by Western blot, immunohistochemistry and immunofluorescence. P-Smad3, Smad2 and Smad7 in the TGF-β/Smads signaling pathway were also analyzed by Western blot.ResultsThe LVIDS (P < 0.01), HW/BW (P < 0.05), type I/III collagen ratio (P < 0.01) and myocardial collagen (P < 0.01) decreased significantly while the LVW/BW, LVFS (P < 0.05) increased significantly in MI+XGM group as compared with those in other groups. The expression of key signal molecules of the TGF-β/Smads signaling pathway, including Smad3, P-Smad3 and Smad2 protein were decreased, while the expression of Smad7 increased in both XG and carvedilol treatment groups as compared to those of the MI group (all P < 0.01). Immunohistochemistry and immunofluorescence further confirmed the down-regulated Smad3 expression.ConclusionXG can improve ventricular reconstruction and inhibit myocardial fibrosis in rats with AMI by regulating TGF-β/Smads signaling pathway.
基金supported by the National Natural Science Foundation of China(81503187)。
文摘Hepatocellular carcinoma(HCC)is one of the common most malignant tumors.This study aimed to determine the in vitro and in vivo anticancer activity of cordycepin and elucidate its mechanism of action.The results of in vitro and in vivo studies revealed that cordycepin inhibited proliferation and migration in HepG-2 cells and inhibited the growth of HepG-2 xenograft-bearing nude mice by inducing apoptosis.Transcriptome sequencing analysis revealed a total of 403 differential genes,which revealed that cordycepin may play an anti-HCC role by regulating Hippo signaling pathway.The regulatory effects of cordycepin on the Hippo signaling pathway was further investigated using a YAP1 inhibitor.The results demonstrated that cordycepin upregulated the expression of MST1 and LAST1,and subsequently inhibited YAP1,which activated the Hippo signaling pathway.This in turn downregulated the expression of GBP3 and ETV5,and subsequently inhibited cell proliferation and migration.Additionally,YAP1 regulated the expression of Bax and Bcl-2,regulated the mitochondrial apoptotic pathway,and induced apoptosis by upregulating the expression of the caspase-3 protein.In summary,this study reveals that cordycepin exerts its anti-hepatocarcinoma effect through regulating Hippo signaling pathway,and GBP3 and ETV5 may be potential therapeutic targets for hepatocarcinoma.
基金supported by the National Natural Science Foundation of China(32471186,31771318)the 14^(th) Five-Year-Plan Advantageous and Characteristic Disciplines(Groups)of Colleges and Universities in Hubei Province for Exercise and Brain Science from Hubei Provincial Department of Education,and the Leading Talent Program Foundation from Wuhan Sports University to Ning Chen+3 种基金the National Natural Science Foundation of China(81701391)the Natural Science Foundation of Hubei Province(2023AFB700)Key Project of Scientific Research of Education Department of Hubei Province(D20234101)Young and Middle aged Scientific Research Team Project of Wuhan Sports University(21KT08)to Jingjing Fan.
文摘Obesity,caused by excessive energy,leads to body weight gain and various diseases,including cognitive impairment.Current studies suggest that diet restriction such as optimal fasting and regular exercise are crucial for improving cognitive capacity.However,further exploration is needed to understand the specific mechanisms of high fat diet(HFD)-induced cognitive decline in obesity.In the present study,4-month-old mice were subjected to HFD feeding for 18 weeks,followed by aerobic exercise and high-intensity intermittent exercise,regular diet feeding,and intermittent fasting for 8 weeks,and then used to evaluate cognitive capacity,inflammation,compromised insulin signaling pathway,and apoptosis in hippocampal tissue,as well as AMPK/SIRT1 and TLR4 signal pathways.Obese mice revealed impaired cognitive capacity as compared with mice fed with regular diets.In contrast,aerobic exercise,high-intensity intermittent exercise,regular diet,and intermittent fasting could inhibit apoptosis caused by inflammation-mediated compromised insulin signaling pathway in hippocampal tissues through activating the AMPK/SIRT1 signal pathway and suppressing the TLR4 signal pathway,thereby rescuing the cognitive impairment of obese mice.Therefore,diet restriction and exercise interventions may play a positive role in reverting obesity-induced cognitive impairment.
基金supported by the Open Project Program of the State Key Laboratory of Food Nutrition and Safety,Tianjin University of Science and Technology(No.SKLFNS-KF-202201)the Open Project of the Key Laboratory of Environmental Pollution Monitoring and Disease Control,Ministry of Education,Guizhou Medical University,China(No.GMU-2022-HJZ-06)。
文摘Hyperoside and quercetin are similar in molecular structures.In this study,the antioxidant regulatory targets of hyperoside and quercetin are mainly in the nuclear factor(erythroid-2-derived)-related factor 2(Nrf2)pathway predicted by network pharmacology.And the antioxidant effect and mechanism of hyperoside and quercetin were measured and compared in H_(2)O_(2)-induced Hep G2 cells and Caenorhabditis elegans.The findings indicated that quercetin was more effective than hyperoside in reducing oxidative damage,which was proved by improved cell viability,decreased reactive oxygen species(ROS)production,decreased cellular apoptosis,and alleviated mitochondrial damage.In addition,quercetin was more efficient than hyperoside in enhancing the expression of Nrf2-associated m RNAs,increasing the activities of superoxide dismutase(SOD),glutathione peroxidase(GSH-Px),and catalase(CAT),and reducing the cellular malondialdehyde(MDA)content.Quercetin was superior to hyperoside in prolonging the lifespan of worms,decreasing the accumulation of lipofuscin,inhibiting ROS production,and increasing the proportion of skn-1 in the nucleus.With the Nrf2 inhibitor ML385,we verified that quercetin and hyperoside primarily protected the cells against oxidative damage via the Nrf2 signalling pathway.Furthermore,molecular docking and dynamics simulations demonstrated that the quercetin-Kelch-like ECH-associated protein 1(Keap1)complex was more stable than the hyperoside-Keap1 complex.The stable structure of the complex might hinder the binding of Nrf2 and Keap1 to release Nrf2 and facilitate its entry into the nucleus to play an antioxidant role.Overall,quercetin had a better antioxidant than hyperoside.
基金supported by the open project of the Key Laboratory of Environmental Pollution Monitoring and Disease Control,Ministry of Education,Guizhou Medical University,China (GMU-2022-HJZ-06)。
文摘Naringin exists in a wide range of Chinese herbal medicine and has proven to possess several pharmacological properties.In this study,PC12,HepG2 cells,and female Drosophila melanogaster were used to investigate the antioxidative and anti-aging effects of naringin and explore the underlying mechanisms.The results showed that naringin inhibited H_(2)O_(2)-induced decline in cell viability and decreased,the content of reactive oxygen species in cells.Meanwhile,naringin prolonged the lifespan of flies,enhanced the abilities of climbing and the resistance to stress,improved the activities of antioxidant enzymes,and decreased malondialdehyde content.Naringin also improved intestinal barrier dysfunction and reduced abnormal proliferation of intestinal stem cells.Moreover,naringin down-regulated the mRNA expressions of inr,chico,pi 3k,and akt-1,and up-regulated the mRNA expressions of dilp2,dilp3,dilp5,and foxo,thereby activating autophagy-related genes and increasing the number of lysosomes.Furthermore,the mutant stocks assays and computer molecular simulation results further indicated that naringin delayed aging by inhibiting the insulin signaling(IIS)pathway and activating the autophagy pathway,which was consistent with the result of network pharmacological predictions.
文摘Objective To determine whether transforming growth factor betal (TGF-β1)/Smad signaling pathway mediates p53-dependent apoptosis in hepatoma cell lines.Methods Three human hepatic carcinoma cell lines, HepG2, Huh-7, and Hep3B, were used in this study.TGF-β1-induced apoptosis in hepatic carcinoma cell lines was analyzed using TUNEL assay.For identifying the mechanism of apoptosis induced by TGF-β1, cell lines were transfected with a TGF-β1-inducible luciferase reportor plasmid containing Smad4 binding elements.After transfection, cells were treated with TGF-β1, then assayed for luciferase activity.Results The apoptosis rate of HepG2 cell lines (48.51%± 8.21%) was significantly higher than control ( 12.72%±2.18%, P<0.05).But TGF-β1 was not able to induce apoptosis of Huh-7 and Hep3B cell lines.The relative luciferase activity of TGF-β1-treated HepG2 cell lines (4.38) was significantly higher than control (1.00, P< 0.05).But the relative luciferase activity of TGF-β1-treated Huh-7 and Hep3B cell lines less increased compared with control.Conclusions HepG2 cells seem to be highly susceptible to TGF-β1-induced apoptosis compared with Hep3B and Huh-7 cell lines.Smad4 is a central mediator of TGF-β1 signaling transdution pathway.TGF-β1/Smad signaling pathway might mediate p53-dependent apoptosis in hepatoma cell lines.
基金supported by grants from the National Natural Science Foundation of China(32030083)。
文摘Advanced lipoxidation end products(ALEs)are formed by modifying proteins with lipid oxidation products.ALEs formed in the body have been linked to diabetes and hepatic disease.However,it is not known whether ALEs formed in heat-processed foods can induce metabolic diseases.Our results indicate that dietary ALEs induce lipid accumulation in the liver of mice at an early stage and continuous feeding of ALEs induces inflammation,oxidative stress and hepatic insulin resistance.The core reason for these adverse reactions is the damage to the intestinal barrier caused by ALEs.Due to the damage to the intestinal barrier,there is an increase in lipopolysaccharides(LPS)in the liver that induces hepatic lipid accumulation by modulating hepatic lipid metabolism.Furthermore,ALEs plays a major role in the regulation of metabolic diseases by directly or indirectly inhibiting AMP activated protein kinase(AMPK)/Sirtuin 1(SIRT1)signaling through LPS.
基金supported by Research on Precision Nutrition and Health Food,Department of Science and Technology of Henan Province(CXJD2021006)。
文摘Two immunomodulatory polysaccharides(Vp2a-Ⅱ and Vp3) were isolated and identified from Apocynum venetum L. flowers, and their innate immune-stimulating functions and working mechanisms were evaluated in RAW264.7 cells. Both the level of released nitric oxide(NO) and expression of inducible nitric oxide synthase(iNOS) m RNA were significantly enhanced in the RAW264.7 macrophages cells treated by Vp2a-Ⅱ and Vp3. Vp2a-Ⅱ(100–800 μg/m L) and Vp3(400 μg/mL) could significantly increase the phagocytic activity of RAW264.7 cells and the secretion and m RNA expression of TNF-α and IL-6 in a concentrationdependent manner through affecting mitogen-activated protein kinase(MAPK) activity and nuclear factor κB(NF-κB) nuclear translocation. Vp2a-Ⅱ might activate the MAPK signaling pathways and induce the nuclear translocation of NF-κB p65, whilst Vp3 likely activated the NF-κB and MAPK signaling pathways without influencing the p38 MAPK route.
基金supported by the Beijing Natural Science Foundation Program(Grant number:5102040)the Open Foundation of the Beijing Key Laboratory of Hypertension Research(Grant number:2015GXYB01)
文摘Background Homocysteine(Hcy)is a risk factor for hypertension,although the mechanisms are poorly understood.Methods We first explored the relationship between Hcy levels and blood pressure(BP)by analyzing the clinical data of primary hypertensive patients admitted to our hospital.Secondly,we explored a rat model to study the effect of Hcy on blood pressure and the role of H2S.An hyperhomocysteinemia(HHcy)rat model was induced to explore the effect of Hcy on blood pressure and the possible mechanism.We carried out tissue histology,extraction and examination of RNA and protein.Finally,we conducted cell experiments to determine a likely mechanism through renin-angiotensin-aldosterone system(RAAS)and extracellular signal-regulated kinase 1/2(ERK1/2)signaling pathway.Results In primary hypertensive inpatients with HHcy,blood pressure was significantly higher as compared with inpatient counterparts lacking HHcy.In the rat model,blood pressure of the Wistar rats was significantly increased with increases in serum Hcy levels and decreased after folate treatment.Angiotensin converting enzyme 1(ACE1)expression in the Wistar Hcy group was enhanced comparing to controls,but was decreased in the Wistar folate group.Angiotensin II receptor type 1(AGTR1)levels in the kidney tissue increased in the Wistar folate group.Both serum H2S and kidney cystathionineγ-lyase decreased with elevated levels of serum Hcy.In vitro,increased concentrations and treatment times for Hcy were associated with increased expression of collagen type 1 and AGTR1.This dose and time dependent response was also observed for p-STAT3 and p-ERK1/2 expression.Conclusion Endogenous H2S might mediate the process of altered blood pressure in response to changes in serum Hcy levels,in a process that is partly dependent on activated RAAS and ERK1/2-STAT3 signaling pathway.
基金financial supported by the key research and development of general projects of Jiangxi province(20192BBF60026).
文摘Inflammatory bowel disease(IBD)is a chronic inflammatory lesion of the intestine,mainly manifested by infiltration of intestinal inflammatory cells and imbalance of gut microbiota.Conventional treatments for IBD include antibiotics,immunosuppressive agents,5-aminosalicylic acid,steroids and surgery,which have high toxic side effects.Resveratrol is a natural polyphenol,and its various derivatives have anti-oxidation and anti-inflammatory properties.In this paper,we comprehensively review the mechanism of resveratrol and its derivates to alleviate IBD by improving intestinal barrier,regulating the unbalanced gut microbiota,and targeting various inflammatory signaling pathways.
基金supported by National Key Research&Development Program of China(2017YFC1600401-3)National Natural Science Foundation of China(31871749 and 31701567)。
文摘Antioxidant peptides have been widely reported.However,only a few reports have been published examining the antioxidant peptides derived from Chinese baijiu.In this study,6 novel peptides derived from Chinese baijiu were identified successfully using high-performance liquid chromatography-quadrupoletime-of-flight mass spectrometry(HPLC-QTOF-MS)with a concentration of 0.835–24.540μg/L.The underlying molecular mechanisms were investigated,and their cytoprotective effects were examined against 2,2’-azobis(2-methylpropanimidamidine)dihydrochloride(AAPH)-induced oxidative stress in Hep G2 cells.The results showed that these peptides exerted protective effects by suppressing reactive oxygen species(ROS)generation,preventing malondialdehyde(MDA)formation,and upregulating cellular antioxidant enzyme activities(SOD,CAT,and GSH-Px)in a dose-dependent manner.Further experiments proved that these peptides exerted antioxidant effects via Nrf2/ARE-mediated signaling pathway by promoting Nrf2 nuclear translocation,inhibiting ubiquitination,and enhancing transcription capacity of Nrf2 in Hep G2 cells.These findings provide the molecular basis for the effects of antioxidant peptides derived from Chinese baijiu,which is important for a deeper understanding of the relationship between human health and moderate drinking.
基金supported by the National Natural Science Foundation of China (31871801, 32001679)the Science and Technology Research of Shaanxi Province (2020QFY08-03)+1 种基金Forestry Science and Technology Programs of Shaanxi Province (SXLK20200213)Fundamental Research Funds for the Central Universities (GK201604013)。
文摘Insulin resistance(IR) has been considered to be an important causative factor of metabolic syndrome(Met S). The present study investigated whether pomegranate peel polyphenols(PPPs) could prevent the development of Met S by improving IR in rats. Male Sprague-Dawley(SD) rats were fed high fat diet(HFD) to induce Met S and supplemented with different dosages of PPPs for 12 weeks. The results showed that HFD-induced insulin resistant rats had disordered metabolism of blood glucose, blood lipid, and terrible muscle fiber morphology when compared with normal diet-fed rats, but PPPs treatment at a dosage of 300 mg/kg·day significantly reversed these negative effects. Moreover, in skeletal muscle tissue of insulin resistant rats, PPPs treatments significantly increased the protein expressions of insulin receptor(Ins R) and phosphorylated insulin receptor substrate 1(IRS-1), stimulated peroxisome proliferator activated receptor gamma(PPARγ) and phosphoinositide 3-kinase(PI3K)/protein kinase B(AKT/PKB) signaling pathway, and aggrandized the protein levels of phosphorylated glycogen synthase kinase-3β(GSK-3β) and glucose transporter 4(GLUT4). Our results suggest that PPPs possess of the beneficial effects on alleviating IR by enhancing insulin sensitivity and regulating glucose metabolism.
基金supported by a grant from Surface Project of Natural Science Foundation of Fujian Province(2008J0075)
文摘BACKGROUND:Calcium calmodulin-dependent kinase II(CaMKII) can be more active in patients with left ventricular hypertrophy(LVH),which in turn causes phosphorylation of ryanodine receptors,resulting in inactivation and the instability of intracellular calcium homeostasis.The present study aimed to determine the effect of CaMKII-ryanodine receptor pathway signaling in rabbits with left ventricular hypertrophy and triggered ventricular arrhythmia.METHODS:Forty New Zealand rabbits were randomized into four groups(10 per group):sham group,LVH group,KN-93 group(LVH+KN-93),and ryanodine group(LVH+ryanodine).Rabbits in the LVH,KN-93,and ryanodine groups were used to establish a left ventricular hypertrophy model by the coarctation of the abdominal aorta,while those in the sham group did not undergo the coarctation.After eight weeks,action potentials(APs) were recorded simultaneously in the endocardium and epicardium,and a transmural electrocardiogram(ECG) was also recorded in the rabbit left ventricular wedge model.Drugs were administered to the animals in the KN-93 and ryanodine groups,and the frequency of triggered APs and ventricular tachycardia was recorded after the rabbits were given isoprenaline(1 μmol/L) and high-frequency stimulation.RESULTS:The frequency(animals/group) of triggered APs was 0/10 in the sham group,10/10 in the LVH group,4/10 in the KN-93 group,and 1/10 in the ryanodine group.The frequencies of ventricular tachycardia were 0/10,9/10,3/10,and 1/10,respectively.The frequencies of polymorphic ventricular tachycardia or ventricular fibrillation were 0/10,7/10,2/10,and 1/10,respectively.The frequencies of triggered ventricular arrhythmias in the KN-93 and ryanodine groups were much lower than those in the LVH group(P<0.05).CONCLUSIONS:KN-93 and ryanodine can effectively reduce the occurrence of triggered ventricular arrhythmia in rabbits with LVH.The CaMKII-ryanodine signaling pathway can be used as a new means of treating ventricular arrhythmia.
基金supported by National Natural Science Foundation of China(32072212)Multi-Year Research Grant of University of Macao(MYRG2018-00169-ICMS)+5 种基金Science and Technology Development Fund of Macao(FDCT)(0098/2020/A)MICINN supporting the Ramón y Cajal grant for M.A.Prieto(RYC-201722891)Jianbo Xiao(RYC2020-030365-I)Xunta de Galicia supporting the Axudas Conecta Peme,the IN852A 2018/58 Neuro Food Project,the program EXCELENCIA-ED431F 2020/12the pre-doctoral grants of P.García-Oliveira(ED481A-2019/295)to Ibero-American Program on Science and Technology(CYTED-AQUA-CIBUS,P317RT0003).
文摘Dietary flavonoids are abundant in natural plants and possess multiple pharmacological and nutritional activities.In this study,apigenin,luteolin,and baicalein were chosen to evaluate their anti-diabetic effect in high-glucose and dexamethasone induced insulin-resistant(IR)HepG2 cells.All flavonoids improves the glucose consumption and glycogen synthesis abilities in IR-HepG2 cells via activating glucose transporter protein 4(GLUT4)and phosphor-glycogen synthase kinase(GSK-3β).These fl avonoids signifi cantly inhibited the production of reactive oxygen species(ROS)and advanced glycation end-products(AGEs),which were closely related to the suppression of the phosphorylation form of NF-κB and P65.The expression levels of insulin receptor substrate-1(IRS-1),insulin receptor substrate-2(IRS-2)and phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt)pathway in IR-HepG2 cells were all partially activated by the fl avonoids,with variable effects.Furthermore,the intracellular metabolic conditions of the fl avonoids were also evaluated.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF)funded by the Ministry of Education,Science and Technology (NRF2020R1A2C1014798 to E-K Kim)。
文摘We evaluated the effect of isoquercetin(quercetin-O-3-glucoside-quercetin,IQ)as a functional component of Abeliophyllum disistichum Nakai ethanol extract(ADLE)on prostate cell proliferation and apoptosis and its effects on the IGF-1/PI3K/Akt/mTOR pathway in benign prostatic hyperplasia(BPH).Metabolites in ADLE were analyzed using UHPLC-qTOF-MS and HPLC.IQ was orally administered(1 or 10 mg/kg)to a testosterone propionate-induced BPH rat model,and its effects on the prostate weight were evaluated.The effect of IQ on androgen receptor(AR)signaling was analyzed in LNCaP cells.Whether IGF-1 and IQ affect the IGF-1/PI3K/Akt/mTOR pathway in BPH-1 cells was also examined.The metabolites in ADLE were identified and quantified,which confirmed that ADLE contained abundant IQ(20.88 mg/g).IQ significantly reduced the prostate size in a concentration-dependent manner in a BPH rat model,and significantly decreased the expression of AR signaling factors in the rat prostate tissue and LNCaP cells in a concentration-dependent manner.IQ also inhibited the PI3K/AKT/mTOR pathway activated by IGF-1 treatment in BPH-1 cells.In BPH-1 cells,IQ led to G0/G1 arrest and suppressed the expression of proliferation factors while inducing apoptosis.Thus,IQ shows potential for use as a pharmaceutical and nutraceutical for BPH.
基金supported by National Natural Science Foundation of China(Number:8187061400)。
文摘Giant cell arteritis(GCA)is a commonly occurring large vacuities characterized by angiopathy of medium and large-sized vessels.GCA granulomatous formation plays an important role in the pathogenesis of GCA.Analysis of T cell lineages and signaling pathways in GCA have revealed the essential role of T cells in the pathology of GCA.T cells are the dominant population present in GCA lesions.CD4+T cell subtypes that are present include Th1,Th2,Th9,Th17,follicular helper T(Tfh)cells,and regulatory T(Treg)cells.CD8 T cells can primarily differentiate into cytotoxic CD8+T lymphocytes and Treg cells.The instrumental part of GCA is the interplay between dendritic cells,macrophages and endothelial cells,which can result in the vascular injury and the characteristics granulomatous infiltrates formation.During the inflammatory loop of GCA,several signaling pathways have been reported to play an essential role in recruiting,activating and differentiating T cells,including T-cell receptor(TCR)signaling,vascular endothelial growth factor(VEGF)-Jagged-Notch signaling and the Janus kinase and signal transducer and activator of transcription(STAT)pathway(JAK-STAT)pathway.In this review,we have focused on the role of T cells and their potential signaling mechanism(s)that are involved in the pathogenesis of GCA.A better understanding of the role of T cells mediated complicated orchestration during the homeostasis and the changes could possibly favor developments of novel treatment strategies against immunological disorders associated with GCA.
基金financially supported by Excellent Young Science Fund for National Natural Science Foundation of China(82022033)Sichuan Science and Technology Program(2024NSFJQ0048)+3 种基金National Natural Science Foundation of China(81902422)Jiangsu Natural Science Foundation(No.BK20231245)Program of Jiangsu Commission of Health(No.M2020024)Program of Yangzhou Commission of Health(No.2023-2-01,2024-2-08).
文摘Vaccinations are essential for preventing and treating disease,especially cancer nanovaccines,which have gained considerable interest recently for their strong anti-tumor immune capabilities.Vaccines can prompt the immune system to generate antibodies and activate various immune cells,leading to a response against tumor tissues and reducing the negative effects and recurrence risks of traditional chemotherapy and surgery.To enhance the flexibility and targeting of vaccines,nanovaccines utilize nanotechnology to encapsulate or carry antigens at the nanoscale level,enabling more controlled and precise drug delivery to enhance immune responses.Cancer nanovaccines function by encapsulating tumor-specific antigens or tumor-associated antigens within nanomaterials.The small size of these nanomaterials allows for precise targeting of T cells,dendritic cells,or cancer cells,thereby eliciting a more potent anti-tumor response.In this paper,we focus on the classification of carriers for cancer nanovaccines,the roles of different target cells,and clinically tested cancer nanovaccines,discussing strategies for effectively inducing cytotoxic T lymphocytes responses and optimizing antigen presentation,while also looking ahead to the translational challenges of moving from animal experiments to clinical trials.