贝叶斯概率矩阵分解方法因较高的预测准确度和良好的可扩展性,常用于个性化推荐系统,但其推荐精度会受初始评分矩阵稀疏特性的影响.提出一种基于广义高斯分布的贝叶斯概率矩阵分解方法GBPMF(generalized Gaussian distribution Bayesian...贝叶斯概率矩阵分解方法因较高的预测准确度和良好的可扩展性,常用于个性化推荐系统,但其推荐精度会受初始评分矩阵稀疏特性的影响.提出一种基于广义高斯分布的贝叶斯概率矩阵分解方法GBPMF(generalized Gaussian distribution Bayesian PMF),采用广义高斯分布作为先验分布,通过机器学习自动选择最优的模型参数,并基于Gibbs采样进行高效训练,从而有效缓解矩阵的稀疏性,减小预测误差.同时考虑到评分时差因素对预测过程的影响,在采样算法中添加时间因子,进一步对方法进行优化,提高预测精度.实验结果表明:GBPMF方法及其优化方法 GBPMF-T对非稀疏矩阵和稀疏矩阵均具有较高的精度,后者精度更高.当矩阵非常稀疏时,传统贝叶斯概率矩阵分解方法的精度急剧降低,而该方法则具有较好的稳定性.展开更多
传统的概率矩阵分解算法虽然较好地解决了推荐过程中的稀疏性和用户冷启动问题,但由于没有考虑到用户之间的信任信息,造成推荐精度不高.本文利用用户评分过程中潜在存在的信任关系,提出一种基于信任机制的概率矩阵分解协同过滤推荐算法T...传统的概率矩阵分解算法虽然较好地解决了推荐过程中的稀疏性和用户冷启动问题,但由于没有考虑到用户之间的信任信息,造成推荐精度不高.本文利用用户评分过程中潜在存在的信任关系,提出一种基于信任机制的概率矩阵分解协同过滤推荐算法TM-PMF(Probabilistic Matrix Factorization Algorithm of Collaborative Filtering Based on Trust Mechanism).首先根据用户间的信任关系来构建信任网络以获得信任评分矩阵.然后将信任评分矩阵与用户评分矩阵进行融合构建用户-信任评分矩阵,接着通过概率矩阵分解技术获得最优推荐列表.最终实验结果表明在不同稀疏数据集上,本文提出的TM-PMF算法较传统算法在精度方面有较大幅度地提高.展开更多
针对个性化推荐过程中高维稀疏性引起的数据震荡和推荐精度不高的问题,提出一种通过交替最小二乘算法(Alternating Least Squares,ALS)来优化的带偏置概率矩阵分解的推荐方法.首先将用户项目的偏置信息融入到改进的概率矩阵分解算法中....针对个性化推荐过程中高维稀疏性引起的数据震荡和推荐精度不高的问题,提出一种通过交替最小二乘算法(Alternating Least Squares,ALS)来优化的带偏置概率矩阵分解的推荐方法.首先将用户项目的偏置信息融入到改进的概率矩阵分解算法中.其次为了提升训练速度和推荐精度,将训练得到的用户项目潜在因子向量作为ALS的初始值,进而得到用户项目潜在因子矩阵.最后利用分解后的两个低维矩阵对原矩阵中的未知评分进行预测.在Movielens100k数据集上的实验结果表明,本文提出的推荐算法在相对于传统的带偏置概率矩阵分解来说最高提高3.41%,结果稳定且准确率高.展开更多
文摘传统的概率矩阵分解算法虽然较好地解决了推荐过程中的稀疏性和用户冷启动问题,但由于没有考虑到用户之间的信任信息,造成推荐精度不高.本文利用用户评分过程中潜在存在的信任关系,提出一种基于信任机制的概率矩阵分解协同过滤推荐算法TM-PMF(Probabilistic Matrix Factorization Algorithm of Collaborative Filtering Based on Trust Mechanism).首先根据用户间的信任关系来构建信任网络以获得信任评分矩阵.然后将信任评分矩阵与用户评分矩阵进行融合构建用户-信任评分矩阵,接着通过概率矩阵分解技术获得最优推荐列表.最终实验结果表明在不同稀疏数据集上,本文提出的TM-PMF算法较传统算法在精度方面有较大幅度地提高.
文摘针对个性化推荐过程中高维稀疏性引起的数据震荡和推荐精度不高的问题,提出一种通过交替最小二乘算法(Alternating Least Squares,ALS)来优化的带偏置概率矩阵分解的推荐方法.首先将用户项目的偏置信息融入到改进的概率矩阵分解算法中.其次为了提升训练速度和推荐精度,将训练得到的用户项目潜在因子向量作为ALS的初始值,进而得到用户项目潜在因子矩阵.最后利用分解后的两个低维矩阵对原矩阵中的未知评分进行预测.在Movielens100k数据集上的实验结果表明,本文提出的推荐算法在相对于传统的带偏置概率矩阵分解来说最高提高3.41%,结果稳定且准确率高.