文本的语义表示是自然语言处理和机器学习领域的研究难点,针对目前文本表示中的语义缺失问题,基于LDA主题模型和Word2vec模型,提出一种新的文本语义增强方法Sem2vec(semantic to vector)模型。该模型利用LDA主题模型获得单词的主题分布...文本的语义表示是自然语言处理和机器学习领域的研究难点,针对目前文本表示中的语义缺失问题,基于LDA主题模型和Word2vec模型,提出一种新的文本语义增强方法Sem2vec(semantic to vector)模型。该模型利用LDA主题模型获得单词的主题分布,计算单词与其上下文词的主题相似度,作为主题语义信息融入到词向量中,代替one-hot向量输入至Sem2vec模型,在最大化对数似然目标函数约束下,训练Sem2vec模型的最优参数,最终输出增强的语义词向量表示,并进一步得到文本的语义增强表示。在不同数据集上的实验结果表明,相比其他经典模型,Sem2vec模型的语义词向量之间的语义相似度计算更为准确。另外,根据Sem2vec模型得到的文本语义向量,在多种文本分类算法上的分类结果,较其他经典模型可以提升0.58%~3.5%,同时也提升了时间性能。展开更多
中国互联网环境的发展,让大量蕴含丰富信息的新词得以普及。而传统的特征词权重TF-IDF(Term Frequency and Inverted Document Frequency)算法主要考虑TF和IDF两个方面的因素,未考虑到新词这一新兴词类的优势。针对特征项中的新词对分...中国互联网环境的发展,让大量蕴含丰富信息的新词得以普及。而传统的特征词权重TF-IDF(Term Frequency and Inverted Document Frequency)算法主要考虑TF和IDF两个方面的因素,未考虑到新词这一新兴词类的优势。针对特征项中的新词对分类结果的影响,提出基于网络新词改进文本分类TF-IDF算法。在文本预处理中识别新词,并在向量空间模型表示中改变特征权重计算公式。实验结果表明把新词发现加入文本预处理,可以达到特征降维的目的,并且改进后的特征权重算法能优化文本分类的结果。展开更多
文摘文本的语义表示是自然语言处理和机器学习领域的研究难点,针对目前文本表示中的语义缺失问题,基于LDA主题模型和Word2vec模型,提出一种新的文本语义增强方法Sem2vec(semantic to vector)模型。该模型利用LDA主题模型获得单词的主题分布,计算单词与其上下文词的主题相似度,作为主题语义信息融入到词向量中,代替one-hot向量输入至Sem2vec模型,在最大化对数似然目标函数约束下,训练Sem2vec模型的最优参数,最终输出增强的语义词向量表示,并进一步得到文本的语义增强表示。在不同数据集上的实验结果表明,相比其他经典模型,Sem2vec模型的语义词向量之间的语义相似度计算更为准确。另外,根据Sem2vec模型得到的文本语义向量,在多种文本分类算法上的分类结果,较其他经典模型可以提升0.58%~3.5%,同时也提升了时间性能。
文摘中国互联网环境的发展,让大量蕴含丰富信息的新词得以普及。而传统的特征词权重TF-IDF(Term Frequency and Inverted Document Frequency)算法主要考虑TF和IDF两个方面的因素,未考虑到新词这一新兴词类的优势。针对特征项中的新词对分类结果的影响,提出基于网络新词改进文本分类TF-IDF算法。在文本预处理中识别新词,并在向量空间模型表示中改变特征权重计算公式。实验结果表明把新词发现加入文本预处理,可以达到特征降维的目的,并且改进后的特征权重算法能优化文本分类的结果。