网络欺凌检测是网络空间信息内容安全的重要研究内容,也关乎青少年在线安全.针对目前网络欺凌检测方案存在的训练样本少、难以处理多义词、分类性能不太理想等问题,提出一种ELMo-TextCNN检测模型.该模型首先采用迁移学习思想,利用预训练...网络欺凌检测是网络空间信息内容安全的重要研究内容,也关乎青少年在线安全.针对目前网络欺凌检测方案存在的训练样本少、难以处理多义词、分类性能不太理想等问题,提出一种ELMo-TextCNN检测模型.该模型首先采用迁移学习思想,利用预训练的ELMo(embeddings from language models)生成动态词向量,不仅解决了网络欺凌样本规模小的问题,而且由于ELMo采用了双向长短期记忆(bi-directional long short-term memory,BiLSTM)网络结构,会根据上下文推断每个词对应的词向量,能够根据语境理解多义词.该模型再通过擅长处理短文本数据的TextCNN(text convolutional neural network)提取文本特征,最后经过全连接层输出分类结果.实验结果证明,提出的ELMo-TextCNN检测方法能够处理一词多义,并获得更好的分类检测效果.展开更多
针对解决法律判决预测中的罪名预测问题,为了更高效地捕捉案件事实描述中上下文的语义信息,提出了一种结合ALBERT(A Lite BERT)和卷积神经网络CNN(TextCNN)的中文罪名预测模型ALBT。模型利用ALBERT模型将法律文本的事实描述转化成向量表...针对解决法律判决预测中的罪名预测问题,为了更高效地捕捉案件事实描述中上下文的语义信息,提出了一种结合ALBERT(A Lite BERT)和卷积神经网络CNN(TextCNN)的中文罪名预测模型ALBT。模型利用ALBERT模型将法律文本的事实描述转化成向量表示,提取事实描述中的关键特征,把提取到的特征送入卷积神经网络TextCNN模型中进行分类预测,最终完成对事实描述中的罪名预测。实验在2018“中国法研杯”司法人工智能挑战赛构建的数据集上精度达到了88.1%。实验结果表明,模型在中文罪名预测上能够达到更好的预测效果。展开更多
文摘网络欺凌检测是网络空间信息内容安全的重要研究内容,也关乎青少年在线安全.针对目前网络欺凌检测方案存在的训练样本少、难以处理多义词、分类性能不太理想等问题,提出一种ELMo-TextCNN检测模型.该模型首先采用迁移学习思想,利用预训练的ELMo(embeddings from language models)生成动态词向量,不仅解决了网络欺凌样本规模小的问题,而且由于ELMo采用了双向长短期记忆(bi-directional long short-term memory,BiLSTM)网络结构,会根据上下文推断每个词对应的词向量,能够根据语境理解多义词.该模型再通过擅长处理短文本数据的TextCNN(text convolutional neural network)提取文本特征,最后经过全连接层输出分类结果.实验结果证明,提出的ELMo-TextCNN检测方法能够处理一词多义,并获得更好的分类检测效果.
文摘针对解决法律判决预测中的罪名预测问题,为了更高效地捕捉案件事实描述中上下文的语义信息,提出了一种结合ALBERT(A Lite BERT)和卷积神经网络CNN(TextCNN)的中文罪名预测模型ALBT。模型利用ALBERT模型将法律文本的事实描述转化成向量表示,提取事实描述中的关键特征,把提取到的特征送入卷积神经网络TextCNN模型中进行分类预测,最终完成对事实描述中的罪名预测。实验在2018“中国法研杯”司法人工智能挑战赛构建的数据集上精度达到了88.1%。实验结果表明,模型在中文罪名预测上能够达到更好的预测效果。