期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于YOLOv5改进的多物体检测算法
1
作者 张小峰 戴丽娟 +3 位作者 张磊 贾志煦 章悦 赵柏淦 《江西师范大学学报(自然科学版)》 北大核心 2025年第3期303-311,共9页
随着目标检测任务由单一对象向多目标物体检测的方向发展,由于物体种类之间存在颜色、形状和体积之间的差异,所以多物体目标检测的性能不高.针对这一问题,该文基于YOLOv5算法提出一种改进的多物体目标检测算法和具有多层空洞卷积级联结... 随着目标检测任务由单一对象向多目标物体检测的方向发展,由于物体种类之间存在颜色、形状和体积之间的差异,所以多物体目标检测的性能不高.针对这一问题,该文基于YOLOv5算法提出一种改进的多物体目标检测算法和具有多层空洞卷积级联结构的CSPDarknet模型.在CSPDarkNet网络中使用多层空洞卷积级联操作,提升了整体网络模型对全局特征提取的能力和加强网络上下文信息之间的联系.在路径聚合金字塔中使用双三次上采样方法和目标区域像素点周围的相邻像素,计算得到目标区域像素,提高了特征图的分辨率和表达能力.第1组实验的检测精度为96.9%和94.8%,第2组实验的检测精度为96.2%、96.4%和98.1%,这2组实验的检测精度均优于YOLOv3和YOLOv5的检测精度. 展开更多
关键词 目标检测 YOLOv5 空洞卷积 路径聚合金字塔
在线阅读 下载PDF
成像制导运动模糊目标检测算法
2
作者 赵春博 莫波 +1 位作者 李大维 赵洁 《兵工学报》 北大核心 2025年第2期265-274,共10页
为提升弹载成像制导中运动模糊图像目标检测的精确性与效率,提出一种轻量化且高效的运动模糊图像目标检测(Lighter and More Effective Motion-blurred Image Object Detection,LEMBD)网络。通过深入分析运动模糊图像的成因,基于成像机... 为提升弹载成像制导中运动模糊图像目标检测的精确性与效率,提出一种轻量化且高效的运动模糊图像目标检测(Lighter and More Effective Motion-blurred Image Object Detection,LEMBD)网络。通过深入分析运动模糊图像的成因,基于成像机理构建了专用的运动模糊图像数据集。在不增加网络参数的前提下,采用共享权重的孪生网络设计,并引入先验知识,将清晰图像的特征学习用于模糊图像的特征提取,以同时实现对清晰与模糊图像的精准检测。此外,设计了部分深度可分离卷积替代普通卷积,显著减少了网络的参数量与计算量,并提升了学习性能。为进一步优化特征融合质量,提出跨层路径聚合特征金字塔网络,有效利用低级特征的细节信息和高级特征的语义信息。实验结果表明,所提LEMBD网络在运动模糊图像目标检测任务中的性能优于传统目标检测方法和主流运动模糊检测算法,能够为精确制导任务提供更精准的目标相对位置信息。 展开更多
关键词 精确目标检测 运动模糊 轻量化 部分深度可分离卷积 跨层路径聚合特征金字塔网络
在线阅读 下载PDF
基于YOLOv8算法改进的小目标交通标志检测 被引量:1
3
作者 王斌 徐洪华 +1 位作者 孙兜成 俞泳帆 《计算机应用》 CSCD 北大核心 2024年第S2期274-279,共6页
为解决现有的目标检测模型在处理小目标交通标志时精度不足以及漏检率较高的问题,提出一种基于YOLOv8算法的改进型目标检测模型。首先,融合残差网络(ResNet)的设计理念,在Backbone中引入残差连接机制使模型更有效地整合多层特征信息,从... 为解决现有的目标检测模型在处理小目标交通标志时精度不足以及漏检率较高的问题,提出一种基于YOLOv8算法的改进型目标检测模型。首先,融合残差网络(ResNet)的设计理念,在Backbone中引入残差连接机制使模型更有效地整合多层特征信息,从而增强对小目标的识别能力;其次,逆转Neck部分的路径聚合特征金字塔网络(PAFPN)结构,提出I-PAFPN(Inverse PAFPN)结构,从而使网络更集中地捕捉目标的关键特征;再次,将原先的3级检测扩展为4级检测,使模型关注并更细致地提取小目标的特征,从而提高模型对小目标的敏感度;最后,引入WIoU(Wise Intersection over Union)损失函数弱化低质量样例对模型的影响,提高模型准确率。在数据增强后的TT100K(Tsinghua-Tencent 100K)数据集上的实验结果表明,经过改进的YOLOv8模型的mAP_(50)和mAP_(50:95)相较于原始的YOLOv8模型分别提高17.1和12.5个百分点,验证了改进YOLOv8模型在小目标交通标志检测方面的有效性和优越性。 展开更多
关键词 交通标志检测 小目标 YOLOv8 残差连接 路径聚合特征金字塔网络 WIoU
在线阅读 下载PDF
基于混合路径聚合网络的点云目标识别 被引量:1
4
作者 梁正友 陈子奥 +1 位作者 蔡俊民 孙宇 《计算机工程与设计》 北大核心 2023年第11期3208-3213,共6页
针对目前点云目标识别通常强调提取点云数据中的语义特征,但是忽视了原始点云中的定位特征的问题,提出一种基于混合路径聚合网络的点云目标识别方法。使用改进的坐标注意力模块增强数据集的点云定位特征,设计一种混合路径聚合的残差特... 针对目前点云目标识别通常强调提取点云数据中的语义特征,但是忽视了原始点云中的定位特征的问题,提出一种基于混合路径聚合网络的点云目标识别方法。使用改进的坐标注意力模块增强数据集的点云定位特征,设计一种混合路径聚合的残差特征金字塔提取点云语义特征,将定位特征与语义特征融合。在KITTI数据集进行实验,可视化实验结果表明,该模型可以有效解决定位错误的问题,数据结果也表明该方法在KITTI点云数据集上的cyclist类别优于现有方法。 展开更多
关键词 点云目标识别 残差网络 特征融合 注意力机制 深度学习 金字塔网络 路径聚合网络
在线阅读 下载PDF
基于改进RetinaNet-GHM算法的钢板表面缺陷检测 被引量:5
5
作者 李雪露 杨永辉 储茂祥 《电子测量技术》 北大核心 2023年第6期100-105,共6页
针对传统钢板表面缺陷检测方法效果差、缺陷定位不准确等问题,提出一种基于改进RetinaNet-GHM的深度学习检测算法。首先,引入路径聚合特征金字塔网络融合浅层和深层语义信息,提升网络对小目标的检测效果;然后,使用GHMC和GHMR损失函数对... 针对传统钢板表面缺陷检测方法效果差、缺陷定位不准确等问题,提出一种基于改进RetinaNet-GHM的深度学习检测算法。首先,引入路径聚合特征金字塔网络融合浅层和深层语义信息,提升网络对小目标的检测效果;然后,使用GHMC和GHMR损失函数对缺陷进行分类和定位;最后,引入高斯形式的软化非极大值抑制算法,提高检测精度。实验结果表明,改进的RetinaNet-GHM算法的平均精度均值为76.7%,裂纹、夹杂、斑块、麻点、压入氧化铁皮以及划痕六类缺陷的平均精度分别为45.2%、88.2%、94.2%、86.1%、65.1%和87.4%。通过与其他经典算法相比,改进的RetinaNet-GHM算法具有较好的检测效果. 展开更多
关键词 目标检测 路径聚合特征金字塔网络 GHM损失函数 软化非极大值抑制
在线阅读 下载PDF
三维坐标注意力路径聚合网络的目标检测算法 被引量:3
6
作者 涂小妹 包晓安 +2 位作者 吴彪 金瑜婷 张庆琪 《计算机科学与探索》 CSCD 北大核心 2023年第12期2984-2998,共15页
针对YOLO系列算法在实际工业应用中存在对目标预测框定位不够准确,难以适用于对定位要求较高的现实场景的问题,提出了三维坐标注意力路径聚合网络的目标检测算法YOLO-T。首先,采用短连接方式对路径聚合特征金字塔的跨层特征进行融合,保... 针对YOLO系列算法在实际工业应用中存在对目标预测框定位不够准确,难以适用于对定位要求较高的现实场景的问题,提出了三维坐标注意力路径聚合网络的目标检测算法YOLO-T。首先,采用短连接方式对路径聚合特征金字塔的跨层特征进行融合,保留其浅层语义信息;其次,基于坐标注意力机制提出了三维坐标注意力(TDCA)模型,利用该模型对路径聚合特征金字塔内的特征进行注意力加权(TPA-FPN),保留有用信息和去除冗余信息;然后,改进了标签分配策略中简单最优传输分配(SimOTA)的损失矩阵计算方法,在保证不损失效率的同时增强了性能;最后,利用Depthwise Separable Conv改进了主干特征提取网络中的卷积模块使模型轻量化。实验结果表明:该算法在PASCAL VOC2007+2012数据集上,检测准确率mAP@0.50比YOLOX-S提高了1.3个百分点,mAP@0.50:0.95提高了3.8个百分点;在COCO2017数据集上平均检测精度mAP@0.50:0.95提高了2.4个百分点。 展开更多
关键词 目标检测 三维坐标注意力(tdca) 注意力路径聚合特征金字塔(tpa-fpn) YOLOX-S算法 改进SimOTA策略
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部