期刊文献+
共找到52篇文章
< 1 2 3 >
每页显示 20 50 100
基于CBDAE和TCN-Transformer的工业传感器时间序列预测
1
作者 许涛 南新元 +1 位作者 蔡鑫 赵濮 《南京信息工程大学学报》 北大核心 2025年第4期455-466,共12页
在真实的工业物联网环境中,传感器信号常受外界噪声干扰,难以获取纯净数据,这影响了基于数据驱动的时间序列预测任务的准确性.为此,基于改进的对比盲去噪自编码器(Contrast Blind Denoising AutoEncoder,CBDAE)和TCN-Transformer网络,... 在真实的工业物联网环境中,传感器信号常受外界噪声干扰,难以获取纯净数据,这影响了基于数据驱动的时间序列预测任务的准确性.为此,基于改进的对比盲去噪自编码器(Contrast Blind Denoising AutoEncoder,CBDAE)和TCN-Transformer网络,本文提出一种新型时间序列预测框架,称为MoCo-CBDAE-TCN-Transformer.该框架通过引入额外的动量编码器、动态队列和信息噪声对比估计正则化,增强了对时间序列数据动态特征的捕捉能力,并有效利用历史负样本信息.在无需噪声先验知识和传感器纯净数据的前提下,通过捕捉和对比时间相关性和噪声特征,实现传感器数据的盲去噪.去噪后的数据通过TCN-Transformer网络进行时间序列预测.TCN-Transformer网络结合残差连接和膨胀卷积的优势以及Transformer的注意力机制,显著提高了预测的准确性和效率.最后,在公开的四缸过程数据集上进行仿真验证,实验结果表明,与传统的去噪方法和时间序列预测模型相比,本文设计的模型能够获得更好的去噪效果和更高的预测精度,其实时处理能力适合部署在实际的工业环境中,为工业物联网中的数据处理和分析提供了一种有效的技术方案. 展开更多
关键词 去噪自编码器 动量编码器 动态队列 信息噪声对比估计 时间卷积网络 transformer
在线阅读 下载PDF
基于深层感知交互Transformer的光伏功率预测
2
作者 张禄晞 石研 +2 位作者 曹志远 张一 杨真真 《智慧电力》 北大核心 2025年第8期70-78,共9页
为充分挖掘数据关联性和时序性,提出基于深层感知交互Transformer(DPIT)的光伏功率预测方法。首先,构建改进时间卷积网络以高效提取跨时间、跨变量依赖关系并扩展感受野;其次,构建包含改进倒置Transformer(IIT)、深度感知自注意力(DPSA... 为充分挖掘数据关联性和时序性,提出基于深层感知交互Transformer(DPIT)的光伏功率预测方法。首先,构建改进时间卷积网络以高效提取跨时间、跨变量依赖关系并扩展感受野;其次,构建包含改进倒置Transformer(IIT)、深度感知自注意力(DPSA)及残差自注意力(RSA)的双分支交互学习网络。其中,IIT在倒置维度上集成卷积加性自注意力、前馈网络及层归一化,以降低计算复杂度,同步提升全局学习能力与关键气象特征和多元相关性捕获性能;DPSA和RSA融合深度感知机制与自注意力机制以增强特征学习能力;最后,通过大量仿真实验验证了DPIT模型兼具低计算复杂度与预测高精度优势。 展开更多
关键词 注意力机制 卷积加性自注意力 时间卷积网络 transformer 光伏功率预测
在线阅读 下载PDF
基于序列成分重组与时序自注意力机制改进TCN-BiLSTM的短期电力负荷预测
3
作者 易雅雯 娄素华 《电力系统及其自动化学报》 北大核心 2025年第4期78-87,共10页
针对区域级电力负荷预测精度较低的问题,提出一种基于序列成分重组与时序自注意力机制改进时间卷积网络-双向长短期记忆网络(TCN-BiLSTM)的短期负荷预测方法。首先,通过中心频率法确定最佳初始分解数目,进而采用变分模态分解算法将原始... 针对区域级电力负荷预测精度较低的问题,提出一种基于序列成分重组与时序自注意力机制改进时间卷积网络-双向长短期记忆网络(TCN-BiLSTM)的短期负荷预测方法。首先,通过中心频率法确定最佳初始分解数目,进而采用变分模态分解算法将原始负荷序列分解为多个不同频率的成分序列;其次,基于各成分序列的样本熵对多个成分序列进行K均值聚类,以获得最佳聚类数量的重组负荷序列分量;接着,将各重组分量输入所提出的负荷预测模型,获得各重组分量预测结果;最终,线性叠加各重组成分序列预测结果以获得最终负荷预测结果。算例分析表明,该方法与其他相关对比模型相比,预测均方根误差降低46.37%、模型拟合效果平均提升3.24%,表明该方法负荷预测精度高、模型拟合效果好,适用于区域级电力负荷预测。 展开更多
关键词 负荷预测 变分模态分解 样本熵 K均值聚类 时序自注意力机制 时间卷积网络 双向长短期记忆网络
在线阅读 下载PDF
结合特征图矫正和改进Transformer的地物遥感图像描述生成
4
作者 赵洋 桑国明 张益嘉 《小型微型计算机系统》 北大核心 2025年第7期1666-1673,共8页
遥感图像(Remote Sensing Image, RSI)描述可自动生成说明地物RSI内容的句子.为解决地物遥感图像描述中非理想光和阴影干扰物体识别,以及地物RSI多尺度、多形态和多关系等因素导致描述不准确的问题,提出了基于特征图矫正的三阶段改进Tra... 遥感图像(Remote Sensing Image, RSI)描述可自动生成说明地物RSI内容的句子.为解决地物遥感图像描述中非理想光和阴影干扰物体识别,以及地物RSI多尺度、多形态和多关系等因素导致描述不准确的问题,提出了基于特征图矫正的三阶段改进Transformer方法(FMC-TSIT).卷积神经网络提取的图像特征中保留着非理想光信息,因此FMC-TSIT对中间聚合特征图进行矫正以重建非干扰特征图,修复特征图中的颜色退化,再将其送入三阶段改进Transformer,探寻图像全局空间表示以及对象之间局部邻域依赖关系,使其综合捕获地物RSI中各个对象的信息并理解目标对象间关联关系.在三阶段改进Transformer中,基于可学习记忆引导向量的类视觉转换器,在每次迭代训练中获取当前输入的视觉特征,更新和融合已有记忆,继而生成图像特征的全局空间关系表示;注意力双向长短时记忆网络(Attention-BiLSTM)抽取图像中对象特征之间的局部邻域依赖关系和上下文信息.实验结果显示,相比于(Convolutional Neural Network-Transformer, CNN-Transformer)方法,FMC-TSIT的综合语义评价指标值提升了3.41个百分点,其他语义指标值也有明显提升. 展开更多
关键词 遥感图像描述 特征矫正 transformer 双向长短时记忆网络 深度学习
在线阅读 下载PDF
基于多头注意力机制和TCN-BiLSTM的IGBT剩余寿命预测方法
5
作者 田源 高树国 +2 位作者 邢超 朱瑞敏 姜士哲 《电气工程学报》 北大核心 2025年第3期69-77,共9页
针对电力电子设备精准运维和半导体功率器件的态势感知需求,提出一种基于多头注意力机制(Multi-head attention mechanism,MA)和时域卷积网络(Temporal convolutional network,TCN)-双向长短时记忆(Bidirectional long short-term memor... 针对电力电子设备精准运维和半导体功率器件的态势感知需求,提出一种基于多头注意力机制(Multi-head attention mechanism,MA)和时域卷积网络(Temporal convolutional network,TCN)-双向长短时记忆(Bidirectional long short-term memory,BiLSTM)网络融合的IGBT剩余寿命预测方法。首先,基于IGBT封装模块老化机理的深入分析,设计并搭建加速老化试验平台,通过控制功率循环过程中的结温波动,施加电流加速IGBT模块的老化进程,采用高精度数据采集系统获取特征参量集-射极饱和压降Vce(sat)老化数据。其次,以TCN模型为基础,引入MA和BiLSTM神经网络构建预测模型,对IGBT劣化特征序列进行预测验证。结果表明,在相同条件下,所提模型相对于传统时序预测模型,在不显著增加模型复杂度和计算负担的情况下,具有更高的精度,充分验证了该模型在工程实践中应用于IGBT剩余寿命在线预测的可行性与高效性。 展开更多
关键词 IGBT 时域卷积网络 双向长短时记忆网络 多头注意力机制 老化预测
在线阅读 下载PDF
基于TCN的双向LSTM光伏功率概率预测
6
作者 盛万兴 李蕊 +2 位作者 赵阳 李鹏丽 张倩 《安徽大学学报(自然科学版)》 北大核心 2025年第2期39-48,共10页
为更好地描述光伏出力不确定性,该文提出了一种基于时序卷积网络(temporal convolutional network,简称TCN)和双向长短期记忆(bidirectional long short term memory,简称BiLSTM)的光伏功率概率预测模型.首先,基于数值天气预报中的云量... 为更好地描述光伏出力不确定性,该文提出了一种基于时序卷积网络(temporal convolutional network,简称TCN)和双向长短期记忆(bidirectional long short term memory,简称BiLSTM)的光伏功率概率预测模型.首先,基于数值天气预报中的云量和降雨量将历史数据集划分为晴天、多云天和阴雨天3种场景,生成具有相似天气类型的测试集和训练样本集:然后,应用TCN进行集成特征维度提取,利用BiLSTM神经网络建模进行输出功率和天气数据时间序列的双向拟合.针对传统区间预测分位数损失函数不可微的缺陷,引入Huber范数近似替代原损失函数,并应用梯度下降进行优化,构建改进的可微分位数回归(quantile regression,简称QR)模型,生成置信区间.最后,采用核密度估计(kerneldensity estimation,简称KDE)给出概率密度预测结果。以我国华东某地区分布式光伏电站作为研究对象,与现有概率预测方法相比,该文所提出的短期预测算法的功率区间各评价指标都有所改进,验证了所提方法的可靠性。 展开更多
关键词 光伏 概率预测 tcn 分位数回归 bilstm
在线阅读 下载PDF
基于TCN-BiLSTM与LSTM模型对比预测北洛河径流 被引量:10
7
作者 张梦凡 丁兵兵 +1 位作者 贾国栋 余新晓 《北京林业大学学报》 CAS CSCD 北大核心 2024年第4期141-148,共8页
【目的】本研究旨在探究TCN-BiLSTM耦合模型与传统LSTM模型在径流模拟预测中的性能,为洪水风险管理和区域水资源规划提供准确有效的径流预测模型。【方法】以北洛河流域为研究区,基于双向长短期记忆网络(BiLSTM)和时域卷积网络(TCN)建... 【目的】本研究旨在探究TCN-BiLSTM耦合模型与传统LSTM模型在径流模拟预测中的性能,为洪水风险管理和区域水资源规划提供准确有效的径流预测模型。【方法】以北洛河流域为研究区,基于双向长短期记忆网络(BiLSTM)和时域卷积网络(TCN)建立一种新的径流预测耦合模型TCN-BiLSTM。利用相关性分析,筛选预测径流的输入因子,确定4种不同的输入方案应用于TCN-BiLSTM耦合模型和传统LSTM模型,每个模型分别预测1、2、3 d的径流量。采用平均绝对误差(MAE)、均方根误差(RMSE)和拟合优度(R^(2))来评估模型的预测性能。【结果】(1)TCN-BiLSTM耦合模型整体预测性能优于LSTM模型,TCN-BiLSTM模型R^(2)达到0.91,高于LSTM的0.89。相比于LSTM,TCN-BiLSTM对于峰值和突变点的捕捉能力更强,对于波动大的复杂数据预测效果更优;(2)在针对未来1~3 d径流量预测中,随着预见期的延长,4种方案下TCN-BiLSTM和LSTM模型的预测效果均有所下降,相较于预测1 d,预测3 d的TCNBiLSTM和LSTM模型的R^(2)分别平均下降了0.17和0.14,RMSE分别平均增大了4.59和4.40,MAE分别平均增大了1.26和1.31;(3)在4种输入方案里,日累积降水量和日径流量作为输入变量时,模型的预测效果最好。降水数据的加入使得TCN-BiLSTM和LSTM模型相较于单一日径流数据作为输入变量时,1、2、3 d径流量预测的R^(2)分别提高15%、14%、6%和18%、14%和1%。【结论】TCN-BiLSTM耦合模型和LSTM模型R^(2)均能达到0.85以上,TCN-BiLSTM模型R^(2)较LSTM提高了2%。对比来看,TCN-BiLSTM模型在拟合洪水过程中表现更为优异,对于汛期的预测性能优于非汛期。输入变量对模型的影响较大,有效且高质量的气象数据能够提高模型的预测性能。 展开更多
关键词 水文模拟 tcn-bilstm 日径流预测 北洛河流域
在线阅读 下载PDF
基于模态分解和TCN-BiLSTM的风电功率预测 被引量:2
8
作者 冯俊磊 吕卫东 +1 位作者 段雪艳 张幽迪 《电子测量技术》 北大核心 2024年第14期49-56,共8页
风电功率的准确预测对于能源系统的稳定运行和电力调度方面具有重要作用。由于风电功率序列具有随机性,间歇性和非线性的特点,使用传统预测以及单一预测模型往往会存在预测精度较低的问题,且容易受到噪声干扰。为了提升风电功率预测的... 风电功率的准确预测对于能源系统的稳定运行和电力调度方面具有重要作用。由于风电功率序列具有随机性,间歇性和非线性的特点,使用传统预测以及单一预测模型往往会存在预测精度较低的问题,且容易受到噪声干扰。为了提升风电功率预测的准确性,本文提出了一种CEEMDAN分解技术与神经网络模型相结合的方法。首先将风电功率序列用CEEMDAN方法分解为若干数量的本征模态分量,通过样本熵值来计算每个模态分量的复杂度,根据样本熵值大小将不同的模态分量重组为重构的子序列。将中高频序列数据使用BiLSTM模型来进行预测,而中低频序列数据则采用TCN模型来预测。最后,将不同模型的预测值叠加得到最终的预测值。通过仿真实验,结果表明本文模型在评价指标RMSE、MAE、SMAPE取值均最低,R方值最高,这几个指标的取值均值分别为91.4132 MW、53.5173 MW、22.2638 MW、0.9807,均优于对比模型,说明本文模型具有较高的预测精度。 展开更多
关键词 风电功率预测 tcn 模态分解 bilstm 组合模型
在线阅读 下载PDF
基于TCN和Transformer的鸡胚心跳混淆信号分类方法
9
作者 耿磊 吴寒冰 +2 位作者 张芳 肖志涛 李晓捷 《农业机械学报》 EI CAS CSCD 北大核心 2023年第8期296-308,共13页
鸡蛋胚胎培养法是制备禽流感疫苗常用的方法,快速准确地对鸡蛋胚胎进行成活性分类并将死胚从活胚中尽早剔除可以有效避免因胚胎死亡导致的细菌或霉菌污染,对孵化效率的提高有着重要意义。目前,主要以鸡胚心跳信号作为分辨死胚和活胚的... 鸡蛋胚胎培养法是制备禽流感疫苗常用的方法,快速准确地对鸡蛋胚胎进行成活性分类并将死胚从活胚中尽早剔除可以有效避免因胚胎死亡导致的细菌或霉菌污染,对孵化效率的提高有着重要意义。目前,主要以鸡胚心跳信号作为分辨死胚和活胚的依据。然而,鸡蛋活胚在注入禽流感病毒96 h后,其心跳信号特征介于普通活胚和死胚之间,易与死胚混淆,本文将该类数据称为鸡胚心跳混淆信号,单独作为一类加入数据集,将原本死胚、活胚二分类改为死胚、普通活胚和96 h活胚三分类,根据信号特征设计了绝对值均值标准化预处理方法,增强原始数据特征以提升数据可分类性,并针对全局特征和细节特征提出了一种基于时间卷积网络(Temporal convolutional network,TCN)和Transformer的残差结构浅层双分支网络结构(Residual fully temporal convolutional with transformer network,RFTNet)。实验结果表明,本文提出的三分类绝对值均值标准化预处理方法和RFTNet双分支网络在鸡胚混淆数据集分类任务中展现出良好性能,检测准确率高达99.75%。此外,在精确率、召回率和F1值3个评价指标上分别达到99.75%、99.74%和99.75%,进一步验证了本文方法的有效性。 展开更多
关键词 鸡胚成活性分类 鸡胚心跳混淆信号 绝对值均值标准化 时间卷积网络 transformer
在线阅读 下载PDF
基于TCN-BiLSTM-AM的居民住宅短期电力负荷预测 被引量:4
10
作者 郭渊 张雪成 +1 位作者 董振标 李俊杰 《现代电子技术》 北大核心 2024年第19期100-108,共9页
针对当前住宅短期电力负荷预测模型存在预测精度低和特征提取困难等问题,提出一种基于TCN-BiLSTMAM的住宅电力负荷预测模型。该模型主要由TCN模型和引入注意力机制层改进的BiLSTM模型组成。首先,通过在历史数据中使用负荷曲线技术计算... 针对当前住宅短期电力负荷预测模型存在预测精度低和特征提取困难等问题,提出一种基于TCN-BiLSTMAM的住宅电力负荷预测模型。该模型主要由TCN模型和引入注意力机制层改进的BiLSTM模型组成。首先,通过在历史数据中使用负荷曲线技术计算特征变量的输入权重,以提高数据输入的准确度和关联性;然后,采用权重匹配的方法将数据序列化输入到TCN模型进行采样训练,提取更多不同时间尺度的特征并加快训练速度,同时,构建改进的BiLSTM模型,引入AM层以提高BiLSTM网络结构的运算速度和处理长序列数据的能力,从而提高模型的泛化能力和运算速度;接着,通过对训练好的TCN模型和改进的BiLSTM模型进行加权输出初始预测值,并利用遗传算法对预测值与真实值的偏差进行偏置寻优,得到优化权重并输出最终预测结果。最后,在同一公开数据集上与RNN、LSTM、BiLSTM和TCN等模型进行对比验证,结果表明,相比较其中较好的模型,文中提出的TCN-BiLSTM-AM模型在MAE和RMSE上分别降低了40.43%和35.59%,同时R2指标为0.9957,具有更高的预测精度和更好的稳定性。 展开更多
关键词 短期负荷 电力预测 tcn bilstm 注意力机制 权重匹配
在线阅读 下载PDF
基于上下文知识增强型Transformer网络的抑郁检测 被引量:1
11
作者 张亚洲 和玉 +1 位作者 戎璐 王祥凯 《计算机工程》 CAS CSCD 北大核心 2024年第8期75-85,共11页
抑郁症作为一种常见的心理健康问题,严重影响人们的日常生活甚至是生命安全。鉴于目前的抑郁症检测存在主观性和人工干预等缺点,基于深度学习的自动检测方式成为热门研究方向。对于最易获取的文本模态而言,主要的挑战在于如何建模抑郁... 抑郁症作为一种常见的心理健康问题,严重影响人们的日常生活甚至是生命安全。鉴于目前的抑郁症检测存在主观性和人工干预等缺点,基于深度学习的自动检测方式成为热门研究方向。对于最易获取的文本模态而言,主要的挑战在于如何建模抑郁文本中的长距离依赖与序列依赖。为解决该问题,提出一种基于上下文知识的增强型Transformer网络模型RoBERTa-BiLSTM,旨在从抑郁文本序列中充分提取和利用上下文特征。结合序列模型与Transformer模型优点,建模单词间上下文交互,为抑郁类别揭示与信息表征提供参考。首先,利用RoBERTa方法将词汇嵌入到语义向量空间;其次,利用双向长短期记忆网络(BiLSTM)模型有效捕获长距离上下文语义;最后,在DAIC-WOZ和EATD-Corpus 2个大规模数据集上进行实证研究。实验结果显示,RoBERTa-BiLSTM模型的准确率分别达到0.74和0.93以上,召回率分别达到0.66和0.56以上,能够准确地检测抑郁症。 展开更多
关键词 抑郁检测 序列模型 深度学习 transformer模型 双向长短期记忆模型
在线阅读 下载PDF
基于TF-CNN-BiLSTM模型的国际天然铀价格预测
12
作者 杨璟喆 薛小刚 《原子能科学技术》 北大核心 2025年第6期1352-1360,共9页
国际天然铀价格对核能产业的可持续性发展至关重要,然而因其市场价格的复杂性与波动使得价格预测具有挑战性。近年来深度学习模型在金融时间序列预测中表现出较好的效果而得到广泛应用。本文提出了一种TF-CNN-BiLSTM模型,该模型结合了Tr... 国际天然铀价格对核能产业的可持续性发展至关重要,然而因其市场价格的复杂性与波动使得价格预测具有挑战性。近年来深度学习模型在金融时间序列预测中表现出较好的效果而得到广泛应用。本文提出了一种TF-CNN-BiLSTM模型,该模型结合了Transformer的自注意力机制、卷积神经网络(CNN)的局部特征提取能力,以及双向长短期记忆网络(BiLSTM)对时序依赖关系的建模优势。通过对历史天然铀价格数据的深入分析,模型在测试集上的RMSE为0.0443,MAE为0.0247,R^(2)为0.8020,说明模型具有较为良好的预测能力。本文研究为国际天然铀市场价格预测提供了新的方法工具,展现了其在实际应用中的潜在价值。 展开更多
关键词 天然铀价格预测 transformer bilstm 卷积神经网络 深度学习
在线阅读 下载PDF
基于HPO优化ECA-CNN-BiLSTM的变压器运行状态分类与识别方法
13
作者 邹德旭 毛雅婷 +5 位作者 权浩 周涛 彭庆军 洪志湖 代维菊 王山 《南京信息工程大学学报》 北大核心 2025年第3期301-314,共14页
变压器运行状态分类与准确识别对于变压器稳定运行和电力系统安全供电至关重要,此类研究目前还存在对变压器负荷数据的关注使用较少、机理模型复杂度高以及油温等数据和过负荷状态并不明确对应等问题.因此,本文提出一种改进的混合模型,... 变压器运行状态分类与准确识别对于变压器稳定运行和电力系统安全供电至关重要,此类研究目前还存在对变压器负荷数据的关注使用较少、机理模型复杂度高以及油温等数据和过负荷状态并不明确对应等问题.因此,本文提出一种改进的混合模型,结合了猎人猎物优化(Hunter-Prey Optimization,HPO)算法和高效通道注意力(Efficient Channel Attention,ECA)模块,应用于卷积神经网络(Convolutional Neural Network,CNN)和双向长短时记忆(Bidirectional Long Short-Term Memory,BiLSTM)神经网络,用于变压器运行状态分类和过负荷故障识别.选取某主变包含9种变压器负荷相关特征的数据作为样本,通过K-Means++聚类和变压器正常周期性负荷分析选定负荷状态类别,基于HPO优化混合模型参数,提高模型的性能和泛化能力.通过对变压器负荷数据进行预处理和特征提取,使用优化后的模型进行负荷阶段的准确识别.实验结果表明,所提出方法的识别准确率可达99.24%,在变压器运行状态的分类和识别上取得了良好的效果. 展开更多
关键词 电力变压器 状态分类识别 高效通道注意力 卷积神经网络 双向长短时记忆
在线阅读 下载PDF
融合TCN与BiLSTM+Attention模型的疫情期间文本情感分析 被引量:8
14
作者 贵向泉 高祯 李立 《西安理工大学学报》 CAS 北大核心 2021年第1期113-121,共9页
鉴于目前主流的文本情感分析方法存在难以解决长期依赖和对上下文信息使用不足的缺陷,本文首次提出将时序卷积网络(TCN)和BiLSTM+Attention模型融合的文本情感分析模型。该模型利用TCN的因果卷积和扩张卷积结构获取更高层次的文本序列特... 鉴于目前主流的文本情感分析方法存在难以解决长期依赖和对上下文信息使用不足的缺陷,本文首次提出将时序卷积网络(TCN)和BiLSTM+Attention模型融合的文本情感分析模型。该模型利用TCN的因果卷积和扩张卷积结构获取更高层次的文本序列特征,并通过双向长短期记忆网络(BiLSTM)进一步学习上下文相关信息的情感特征;最后,引入自注意力机制(Self-Attention)帮助模型优化特征向量,提高情感分类的准确度。在新型冠状病毒疫情期间的微博文本数据集上进行对比实验,结果表明该模型的性能相较于其它模型有明显的提升。 展开更多
关键词 文本情感分析 时序卷积网络 双向长短期记忆网络 自注意力机制 疫情期间微博文本
在线阅读 下载PDF
基于Inception-BiLSTM的小样本刀具磨损状态识别研究 被引量:3
15
作者 魏永合 王耿 吴静远 《组合机床与自动化加工技术》 北大核心 2024年第5期147-151,共5页
针对工业生产中故障数据不足难以准确进行故障诊断问题,以Inception模块为主体结构,结合双向长短时记忆网络(BiLSTM),提出了Inception-BiLSTM故障诊断方法,并用刀具磨损状态识别进行实验验证。首先,将振动信号通过连续小波变换(CWT)得... 针对工业生产中故障数据不足难以准确进行故障诊断问题,以Inception模块为主体结构,结合双向长短时记忆网络(BiLSTM),提出了Inception-BiLSTM故障诊断方法,并用刀具磨损状态识别进行实验验证。首先,将振动信号通过连续小波变换(CWT)得到时频特征图,利用Inception网络对时频图进行特征提取;然后,使用全局平均池化(GAP)将特征向量降维;最后,使用BiLSTM提取数据信息,以识别刀具磨损状态。实验结果表明,在小样本条件下,该方法相较于对比方法对刀具磨损状态识别的准确率更高。 展开更多
关键词 INCEPTION 双向长短时记忆网络 刀具 状态识别 连续小波变换 小样本
在线阅读 下载PDF
基于TCN-BiLSTM的网络安全态势预测 被引量:15
16
作者 孙隽丰 李成海 曹波 《系统工程与电子技术》 EI CSCD 北大核心 2023年第11期3671-3679,共9页
针对现有网络安全态势预测模型预测精确度低和收敛速度慢的问题,提出一种基于时域卷积网络(temporal convolution network,TCN)和双向长短期记忆(bi-directional long short-term memory,BiLSTM)网络的预测方法。首先,将TCN处理时间序... 针对现有网络安全态势预测模型预测精确度低和收敛速度慢的问题,提出一种基于时域卷积网络(temporal convolution network,TCN)和双向长短期记忆(bi-directional long short-term memory,BiLSTM)网络的预测方法。首先,将TCN处理时间序列问题的优势应用到态势预测上学习态势值的序列特征;随后,引入注意力机制动态调整属性的权值;然后,利用BiLSTM模型学习态势值的前后状况,以提取序列中更多的信息进行预测;利用粒子群优化(particle swarm optimization,PSO)算法进行超参数寻优,提升预测能力。实验结果表明,所提预测方法的拟合度可达0.9995,其拟合效果和收敛速度均优于其他模型。 展开更多
关键词 网络安全 态势预测 时域卷积网络 双向长短期记忆网络 粒子群优化 注意力机制
在线阅读 下载PDF
基于CWT和CNN-BiLSTM的散绕同步电机定子绕组短路故障检测方法 被引量:5
17
作者 于跃强 陈宇 +2 位作者 赵仲勇 宫小宇 唐超 《高电压技术》 EI CAS CSCD 北大核心 2024年第5期2166-2176,共11页
近年来,基于脉冲频率响应法(impulse frequency response analysis,IFRA)的神经网络模型已被证实能够有效检测定子绕组故障。然而,这些模型普遍具有鲁棒性不强、抗噪能力差等特点,究其原因是大多数的模型采用简单的神经网络架构且常规的... 近年来,基于脉冲频率响应法(impulse frequency response analysis,IFRA)的神经网络模型已被证实能够有效检测定子绕组故障。然而,这些模型普遍具有鲁棒性不强、抗噪能力差等特点,究其原因是大多数的模型采用简单的神经网络架构且常规的IFRA普遍采用快速傅里叶变换(fast Fourier transform,FFT)对暂态信号进行时频变换,而FFT并不适合处理暂态突变的非平稳信号。文中以散绕结构的同步电机定子绕组为检测对象,采用连续小波变换(continual wavelet transform,CWT)代替FFT处理IFRA的暂态信号,并基于一维卷积神经网络(convolutional neural networks,CNN)和双向长短时记忆网络(bi-directional long short-term memory,BiLSTM)构建CNN-BiLSTM模型对采用CWT变换之后的信号进行故障检测。实验结果表明:采用CWT处理后的频域序列作为该模型的输入,相较于其它结构单一的模型,其平均准确率最优且高达99.01%。噪声对比实验表明:采用CWT变换后的数据能使故障诊断模型的鲁棒性及泛化性更强。 展开更多
关键词 同步电机 定子绕组 脉冲频率响应法 小波变换 CNN-bilstm
在线阅读 下载PDF
基于WT-CNN-BiLSTM模型的日前光伏功率预测 被引量:9
18
作者 杨建 常学军 +2 位作者 姚帅 裴震宇 顾波 《南方电网技术》 CSCD 北大核心 2024年第8期61-69,79,共10页
光伏功率的准确预测对于电网的安全稳定和经济运行具有重大意义。为此,提出了一种日前光伏功率预测方法,利用小波变换(wavelet transform,WT)将数值天气预报数据(numerical weather prediction,NWP)和光伏功率数据分解为具有时间信息的... 光伏功率的准确预测对于电网的安全稳定和经济运行具有重大意义。为此,提出了一种日前光伏功率预测方法,利用小波变换(wavelet transform,WT)将数值天气预报数据(numerical weather prediction,NWP)和光伏功率数据分解为具有时间信息的频率数据,消除数据信息中随机性和波动性对预测精度的影响,利用卷积神经网络(convolutional neural network,CNN)模型深度挖掘输入数据的季节性特征和空间关联特性,利用双向长短期记忆网络(bi-directional long-short term memory,BiLSTM)模型获取输入数据序列的时间相关性,构建基于WT-CNN-BiLSTM的日前光伏功率预测模型。以某一光伏电站为计算对象,在不同季节和气候条件下对比分析WT-CNN-BiLSTM模型、CNN-BiLSTM模型、LSTM(long-short term memory)模型、GRU(gated recurrent unit)模型以及PSO-BP(particle swarm optimization-back propagation)模型的预测结果,计算结果表明WT-CNN-BiLSTM模型的预测精度高于其他模型的预测精度。 展开更多
关键词 光伏功率预测 小波变换 卷积神经网络 双向长短期记忆网络
在线阅读 下载PDF
BiLSTM与TCN在户变关系异常识别中的应用 被引量:7
19
作者 杨健 周亚同 刘君 《电力系统及其自动化学报》 CSCD 北大核心 2022年第5期1-10,共10页
准确的用户电表与变压器(台区)归属关系是实现低压台区线损精确计算分析的前提。为解决因用户数据量太少极易造成台区归属误判的问题,提出一种基于双向长短期记忆网络和时间序列卷积(BiLSTM-TCN)的时间序列分类方法,对用户所属台区进行... 准确的用户电表与变压器(台区)归属关系是实现低压台区线损精确计算分析的前提。为解决因用户数据量太少极易造成台区归属误判的问题,提出一种基于双向长短期记忆网络和时间序列卷积(BiLSTM-TCN)的时间序列分类方法,对用户所属台区进行识别。首先通过负荷数据计算台区线损率,识别可能存在户变异常的台区。然后将用户一周的电压日冻结曲线拼接成长时间序列进行判别,避免由于数据量太少造成误判。最后将异常用户加入到识别台区下,计算该台区户变关系调整前后线损率变化,验证户变关系识别是否正确。与传统方法相比,所提方法无需进行复杂的特征工程,识别准确率高,具有较强的实际应用价值。 展开更多
关键词 双向长短期记忆网络 时间序列卷积 户变关系识别 电力大数据 时间序列分类
在线阅读 下载PDF
基于CEEMDAN和TCN的变压器油中溶解气体含量预测 被引量:5
20
作者 张文乾 刘金凤 +2 位作者 江军 赵旭峰 范利东 《电力工程技术》 北大核心 2024年第3期192-200,233,共10页
准确预测油中溶解气体含量的变化趋势,对变压器的状态评价和寿命评估有着积极的作用。为了提高油中溶解气体预测的准确性,文中提出一种基于自适应噪声完备集合经验模态分解(complete ensemble empirical mode decomposition with adapti... 准确预测油中溶解气体含量的变化趋势,对变压器的状态评价和寿命评估有着积极的作用。为了提高油中溶解气体预测的准确性,文中提出一种基于自适应噪声完备集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和时间卷积网络(time convolution network,TCN)的油中溶解气体预测方法。首先,通过CEEMDAN方法将油中溶解气体含量的原始序列分解为多个本征模态分量,并将其中的稳定分量与非稳定分量分离;其次,对本征模态分量分别建立TCN并预测未来趋势变化;最后,叠加TCN对各个本征模态分量的预测结果,重构得到原始序列的预测结果。实例分析表明,该预测方法的均方根误差、平均绝对误差、最大误差分别为1.01μL/L、1.53μL/L、5.54μL/L,相较于未采用CEEMDAN算法时分别减小了53.47%、41.18%、13.36%;在使用CEEMDAN的情况下,对比常用的递归神经网络,3种误差均最小。且对比现有油中溶解气体预测方法,文中提出的油中溶解气体预测方法具有更高的预测精度,可以为制定状态检修策略提供更有效的支撑。 展开更多
关键词 油中溶解气体 变压器 自适应噪声完备集合经验模态分解(CEEMDAN) 时间卷积网络(tcn) 时间序列预测 状态检修
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部