Marine biofouling seriously affects human marine exploitation and transportation activities,to which marine antifouling(AF)coatings are considered to be the most cost-effective solution.Since the mid-20th century,huma...Marine biofouling seriously affects human marine exploitation and transportation activities,to which marine antifouling(AF)coatings are considered to be the most cost-effective solution.Since the mid-20th century,human beings have dedicated their efforts on developing AF coatings with long cycle and high performance,leading to a large number of non-target organisms?distortion,death and marine environmental pollution.Polydimethylsiloxane(PDMS),is considered as one of the representative environment-friendly AF materials thanks to its non-toxic,hydrophobic,low surface energy and AF properties.However,PDMS AF coatings are prone to mechanical damage,weak adhesion strength to substrate,and poor static AF effect,which seriously restrict their use in the ocean.The rapid development of various nanomaterials provides an opportunity to enhance and improve the mechanical properties and antifouling properties of PDMS coating by embedding nanomaterials.Based on our research background and the problems faced in our laboratory,this article presents an overview of the current progress in the fields of PDMS composite coatings enhanced by different nanomaterials,with the discussion focused on the advantages and main bottlenecks currently encountered in this field.Finally,we propose an outlook,hoping to provide fundamental guidance for the development of marine AF field.展开更多
A mixture of polydimethylsiloxane (PDMS) doped with phosphor particles can be found across diverse industries having different applications. This mixture plays a particularly important role in the field of lighting, w...A mixture of polydimethylsiloxane (PDMS) doped with phosphor particles can be found across diverse industries having different applications. This mixture plays a particularly important role in the field of lighting, white light-emitting diodes (LED's), flexible display devices, anti-counterfeiting (AC) solutions, luminescence thermometers and many types of sensors. The field of mechanoluminescence and biomedical are booming and there is also potential for visible light communication (VLC). In this comprehensive review, the basic characteristics of PDMS and a list of selected phosphors suitable for creating a mixture of PDMS and phosphor are presented. The summary and a detailed overview of the implemented applications of this perspective mixture over the last decade is presented as well.展开更多
基金financially supported by National Natural Science Foundation of China(Grant No.52073071,51803041)Natural Science Funding for Excellent Young Scholar of Heilongjiang Province(YQ2022E021,L.Wang)+2 种基金the Fundamental Research Funds for the Central Universities(HIT.DZJJ.2023056)the Research Fund of State Key Laboratory for Marine Corrosion and Protection of Luoyang Ship Material Research Institute(No.JS220407)the financial support from the Spanish Ministry of Economy and the Canary Islands program Vieray Clavijo Senior(Ref.2023/00001156)。
文摘Marine biofouling seriously affects human marine exploitation and transportation activities,to which marine antifouling(AF)coatings are considered to be the most cost-effective solution.Since the mid-20th century,human beings have dedicated their efforts on developing AF coatings with long cycle and high performance,leading to a large number of non-target organisms?distortion,death and marine environmental pollution.Polydimethylsiloxane(PDMS),is considered as one of the representative environment-friendly AF materials thanks to its non-toxic,hydrophobic,low surface energy and AF properties.However,PDMS AF coatings are prone to mechanical damage,weak adhesion strength to substrate,and poor static AF effect,which seriously restrict their use in the ocean.The rapid development of various nanomaterials provides an opportunity to enhance and improve the mechanical properties and antifouling properties of PDMS coating by embedding nanomaterials.Based on our research background and the problems faced in our laboratory,this article presents an overview of the current progress in the fields of PDMS composite coatings enhanced by different nanomaterials,with the discussion focused on the advantages and main bottlenecks currently encountered in this field.Finally,we propose an outlook,hoping to provide fundamental guidance for the development of marine AF field.
基金European Union under the REFRESH-Research Excellence For REgion Sustainability and High-tech Industries project number CZ.10.03.01/00/22003/0000048 via the Operational Programme Just TransitionMinistry of Education,Youth,and Sports of the Czech Republic con-ducted by the VSB-Technical University of Ostrava,under grant no.SP2024/081+1 种基金projects CI-CECO(LA/P/0006/2020,UIDB/50011/2020&UIDP/50011/2020)and Di-giAqua(PTDC/EEI-EEE/0415/2021)financed by national funds through the(Portuguese Science and Technology Foundation/MCTES(FCT I.P.)).
文摘A mixture of polydimethylsiloxane (PDMS) doped with phosphor particles can be found across diverse industries having different applications. This mixture plays a particularly important role in the field of lighting, white light-emitting diodes (LED's), flexible display devices, anti-counterfeiting (AC) solutions, luminescence thermometers and many types of sensors. The field of mechanoluminescence and biomedical are booming and there is also potential for visible light communication (VLC). In this comprehensive review, the basic characteristics of PDMS and a list of selected phosphors suitable for creating a mixture of PDMS and phosphor are presented. The summary and a detailed overview of the implemented applications of this perspective mixture over the last decade is presented as well.