A constrained generalized predictive control (GPC) algorithm based on the T-S fuzzy model is presented for the nonlinear system. First, a Takagi-Sugeno (T-S) fuzzy model based on the fuzzy cluster algorithm and th...A constrained generalized predictive control (GPC) algorithm based on the T-S fuzzy model is presented for the nonlinear system. First, a Takagi-Sugeno (T-S) fuzzy model based on the fuzzy cluster algorithm and the orthogonalleast square method is constructed to approach the nonlinear system. Since its consequence is linear, it can divide the nonlinear system into a number of linear or nearly linear subsystems. For this T-S fuzzy model, a GPC algorithm with input constraints is presented. This strategy takes into account all the constraints of the control signal and its increment, and does not require the calculation of the Diophantine equations. So it needs only a small computer memory and the computational speed is high. The simulation results show a good performance for the nonlinear systems.展开更多
Takagi-Sugeno(T-S) fuzzy model is difficult to be linearized because of membership functions included.So,novel T-S fuzzy state transformation and T-S fuzzy feedback are proposed for the linearization of T-S fuzzy syst...Takagi-Sugeno(T-S) fuzzy model is difficult to be linearized because of membership functions included.So,novel T-S fuzzy state transformation and T-S fuzzy feedback are proposed for the linearization of T-S fuzzy system.The novel T-S fuzzy state transformation is the fuzzy combination of local linear transformation which transforms local linear models in the T-S fuzzy model into the local linear controllable canonical models.The fuzzy combination of local linear controllable canonical model gives controllable canonical T-S fuzzy model and then nonlinear feedback is obtained easily.After the linearization of T-S fuzzy model,a robust H∞ controller with the robustness of sliding model control(SMC) is designed.As a result,controlled T-S fuzzy system shows the performance of H∞ control and the robustness of SMC.展开更多
A robust adaptive trajectory linearization control (RATLC) algorithm for a class of nonlinear systems with uncertainty and disturbance based on the T-S fuzzy system is presented. The unknown disturbance and uncertai...A robust adaptive trajectory linearization control (RATLC) algorithm for a class of nonlinear systems with uncertainty and disturbance based on the T-S fuzzy system is presented. The unknown disturbance and uncertainty are estimated by the T-S fuzzy system, and a robust adaptive control law is designed by the Lyapunov theory. Irrespective of whether the dimensions of the system and the rules of the fuzzy system are large or small, there is only one parameter adjusting on line. Uniformly ultimately boundedness of all signals of the composite closed-loop system are proved by theory analysis. Finally, a numerical example is studied based on the proposed method. The simulation results demonstrate the effectiveness and robustness of the control scheme.展开更多
This article deals with the robust stability analysis and passivity of uncertain discrete-time Takagi- Sugeno (T-S) fuzzy systems with time delays. The T-S fuzzy model with parametric uncertainties can approximate n...This article deals with the robust stability analysis and passivity of uncertain discrete-time Takagi- Sugeno (T-S) fuzzy systems with time delays. The T-S fuzzy model with parametric uncertainties can approximate nonlinear uncertain systems at any precision. A sufficient condition on the existence of robust passive controller is established based on the Lyapunov stability theory. With the help of linear matrix inequality (LMI) method, robust passive controllers are designed so that the closed-loop system is robust stable and strictly passive. Furthermore, a convex optimization problem with LMI constraints is formulated to design robust passive controllers with the maximum dissipation rate. A numerical example illustrates the validity of the proposed method.展开更多
A fuzzy sliding-mode control (FSMC) scheme based on T-S fuzzy models was proposed for the permanent magnet synchronous motor (PMSM) drive system to solve the speed tracking problem. A T-S fuzzy model was firstly forme...A fuzzy sliding-mode control (FSMC) scheme based on T-S fuzzy models was proposed for the permanent magnet synchronous motor (PMSM) drive system to solve the speed tracking problem. A T-S fuzzy model was firstly formed to represent the nonlinear system of PMSM. For converting the tracking control into a stabilization problem, a new control design was proposed to define the internal desired states. Then, the FSMC controller for PMSM system with parameter variation and load disturbance was designed based on the fuzzy model. The performance of the proposed controller was verified by experimental results on PMSM system. The results show that the FSMC scheme can drive the dynamics of PMSM into a designated sliding surface in finite time and guarantee the property of asymptotical stability. The information of upper bound of modeling errors as well as perturbations is not required when using the FSMC controller.展开更多
Ship-mounted container cranes are challenging industrial applications of nonlinear pendulum-like systems with oscillating disturbance which can cause them unstable.Since wave-induced ship motion causes the hoisted con...Ship-mounted container cranes are challenging industrial applications of nonlinear pendulum-like systems with oscillating disturbance which can cause them unstable.Since wave-induced ship motion causes the hoisted container to swing during the transfer operation,the swing motion may be dangerously large and the operation must be stopped.In order to reduce payload pendulation of ship-mounted crane,nonlinear dynamics of ship-mounted crane is derived and a control method using T-S fuzzy model is proposed.Simulation results are given to illustrate the validity of the proposed design method and pendulation of ship-mounted crane is reduced significantly.展开更多
A design method is presented for Takagi-Sugeno (T-S) fuzzy model based nonlinear sliding model controller. First, the closed-loop fuzzy system is divided into a set of dominant local linear systems according to oper...A design method is presented for Takagi-Sugeno (T-S) fuzzy model based nonlinear sliding model controller. First, the closed-loop fuzzy system is divided into a set of dominant local linear systems according to operating sub-regions. In each sub-region the fuzzy system consists of nominal linear system and a group of interacting systems. Then the controller composed two parts is designed. One part is designed to control the nominal system, the other is designed to control the interacting systems with sliding mode theory. The proposed controller can improve the robusmess and gnarantee tracking performance of the fuzzy system. Stability is guaranteed without finding a common positive definite matrix.展开更多
A robust attitude controller for hydrofoil catamaran throughout its operating envelope is proposed, based on Tagaki-Sugeno (T-S) fuzzy model. Firstly, T-S fuzzy model and robust attitude control strategy for hydrofoil...A robust attitude controller for hydrofoil catamaran throughout its operating envelope is proposed, based on Tagaki-Sugeno (T-S) fuzzy model. Firstly, T-S fuzzy model and robust attitude control strategy for hydrofoil catamaran is presented by use of linear matrix inequality (LMI) techniques. Secondly, a nonlinear mathematical model of hydrofoil catamaran is established, acting as the platform for further researches. The specialty in interpolation of T-S fuzzy model guarantees that feedback gain can be obtained smoothly, while boat's speed is shifting over the operating envelope. The external disturbances are also attenuated to achieve H ∞ control performance, meanwhile. Finally, based on such a boat, HC200B-A1, simulation researches demonstrate the design procedures and the effectiveness of fuzzy robust attitude controller.展开更多
Security and reliability must be focused on control sys- tems firstly, and fault detection and diagnosis (FDD) is the main theory and technology. Now, there are many positive results in FDD for linear networked cont...Security and reliability must be focused on control sys- tems firstly, and fault detection and diagnosis (FDD) is the main theory and technology. Now, there are many positive results in FDD for linear networked control systems (LNCSs), but nonlinear networked control systems (NNCSs) are less involved. Based on the T-S fuzzy-modeling theory, NNCSs are modeled and network random time-delays are changed into the unknown bounded uncertain part without changing its structure. Then a fuzzy state observer is designed and an observer-based fault detection approach for an NNCS is presented. The main results are given and the relative theories are proved in detail. Finally, some simulation results are given and demonstrate the proposed method is effective.展开更多
The robust H∞ control problem of norm bounded uncertain discrete Takagi-Sugeno (T-S) fuzzy systems with state delay is addressed. First, by constructing an appropriate basis-dependent Lyapunov-Krasovskii function, ...The robust H∞ control problem of norm bounded uncertain discrete Takagi-Sugeno (T-S) fuzzy systems with state delay is addressed. First, by constructing an appropriate basis-dependent Lyapunov-Krasovskii function, a new delay-dependent sufficient condition on robust H∞-disturbance attenuation is presented, in which both robust stability and prescribed H∞ performance are guaranteed to be achieved. Then based on the condition, a delay-dependent robust Hoo controller design scheme is developed in term of a convex algorithm. Finally, examples are given to illustrate the effectiveness of the proposed method.展开更多
This paper is concerned with a fuzzy robust H∞ control problem via output feedbackfor a class of uncertain nonlinear systems. The uncertain nonlinear systemsare represented by fuzzy Takagi-Sugeno (T-S) model, and a...This paper is concerned with a fuzzy robust H∞ control problem via output feedbackfor a class of uncertain nonlinear systems. The uncertain nonlinear systemsare represented by fuzzy Takagi-Sugeno (T-S) model, and a fuzzy controller is designedbased on the state observer. A sufficient condition for the existence of fuzzycontroller is given in terms of the linear matrix inequalities (LMIs) and the adaptivelaw. Based on Lyapunov stability theorem, the proposed fuzzy control scheme suchthat the desired H∞performance is achieved in the sense that all the closed-loopsignals are uniformly ultimately bounded (UUB). Simulation results indicate theeffectiveness of the developed control scheme. In this paper, a less conservativefuzzy tracking controller is proposed, where the matching condition and the upperbound are avoided. Comparing with the existing works, the dimension of the LMIsof this paper is reduced.展开更多
A frequency-domain-based sufficient condition is derived to guarantee the globally asymptotic stability of the simplest Takagi-Sugeno (T-S) fuzzy control system by using the circle criterion. The analysis is perform...A frequency-domain-based sufficient condition is derived to guarantee the globally asymptotic stability of the simplest Takagi-Sugeno (T-S) fuzzy control system by using the circle criterion. The analysis is performed in the frequency domain, and hence the condition is of great significance when the frequency-response method, which is widely used in the linear control theory and practice, is employed to synthesize the simplest T-S fuzzy controller. Besides, this sufficient condition is featured by a graphical interpretation, which makes the condition straightforward to be used. Comparisons are drawn between the performance of the simplest T-S fuzzy controller and that of the linear compensator. Two numerical examples are presented to demonstrate how this sufficient condition can be applied to both stable and unstable plants.展开更多
In order to obtain accurate prediction model and compensate for the influence of model mismatch on the control performance of the system and avoid solving nonlinear programming problem,an adaptive fuzzy predictive fun...In order to obtain accurate prediction model and compensate for the influence of model mismatch on the control performance of the system and avoid solving nonlinear programming problem,an adaptive fuzzy predictive functional control(AFPFC) scheme for multivariable nonlinear systems was proposed.Firstly,multivariable nonlinear systems were described based on Takagi-Sugeno(T-S) fuzzy models;assuming that the antecedent parameters of T-S models were kept,the consequent parameters were identified on-line by using the weighted recursive least square(WRLS) method.Secondly,the identified T-S models were linearized to be time-varying state space model at each sampling instant.Finally,by using linear predictive control technique the analysis solution of the optimal control law of AFPFC was established.The application results for pH neutralization process show that the absolute error between the identified T-S model output and the process output is smaller than 0.015;the tracking ability of the proposed AFPFC is superior to that of non-AFPFC(NAFPFC) for pH process without disturbances,the overshoot of the effluent pH value of AFPFC with disturbances is decreased by 50% compared with that of NAFPFC;when the process parameters of AFPFC vary with time the integrated absolute error(IAE) performance index still retains to be less than 200 compared with that of NAFPFC.展开更多
基金This Project was supported by the National Natural Science Foundation of China (60374037 and 60574036)the Opening Project Foundation of National Lab of Industrial Control Technology (0708008).
文摘A constrained generalized predictive control (GPC) algorithm based on the T-S fuzzy model is presented for the nonlinear system. First, a Takagi-Sugeno (T-S) fuzzy model based on the fuzzy cluster algorithm and the orthogonalleast square method is constructed to approach the nonlinear system. Since its consequence is linear, it can divide the nonlinear system into a number of linear or nearly linear subsystems. For this T-S fuzzy model, a GPC algorithm with input constraints is presented. This strategy takes into account all the constraints of the control signal and its increment, and does not require the calculation of the Diophantine equations. So it needs only a small computer memory and the computational speed is high. The simulation results show a good performance for the nonlinear systems.
基金Research financially supported by Changwon National University in 2009
文摘Takagi-Sugeno(T-S) fuzzy model is difficult to be linearized because of membership functions included.So,novel T-S fuzzy state transformation and T-S fuzzy feedback are proposed for the linearization of T-S fuzzy system.The novel T-S fuzzy state transformation is the fuzzy combination of local linear transformation which transforms local linear models in the T-S fuzzy model into the local linear controllable canonical models.The fuzzy combination of local linear controllable canonical model gives controllable canonical T-S fuzzy model and then nonlinear feedback is obtained easily.After the linearization of T-S fuzzy model,a robust H∞ controller with the robustness of sliding model control(SMC) is designed.As a result,controlled T-S fuzzy system shows the performance of H∞ control and the robustness of SMC.
基金the National Natural Science Foundation of China (90716028 and 90405011).
文摘A robust adaptive trajectory linearization control (RATLC) algorithm for a class of nonlinear systems with uncertainty and disturbance based on the T-S fuzzy system is presented. The unknown disturbance and uncertainty are estimated by the T-S fuzzy system, and a robust adaptive control law is designed by the Lyapunov theory. Irrespective of whether the dimensions of the system and the rules of the fuzzy system are large or small, there is only one parameter adjusting on line. Uniformly ultimately boundedness of all signals of the composite closed-loop system are proved by theory analysis. Finally, a numerical example is studied based on the proposed method. The simulation results demonstrate the effectiveness and robustness of the control scheme.
基金supported by the National Natural Science Foundation of China(60710002)Self-Planned Task of State Key Laboratory of Robotics and System(SKLRS200801A03).
文摘This article deals with the robust stability analysis and passivity of uncertain discrete-time Takagi- Sugeno (T-S) fuzzy systems with time delays. The T-S fuzzy model with parametric uncertainties can approximate nonlinear uncertain systems at any precision. A sufficient condition on the existence of robust passive controller is established based on the Lyapunov stability theory. With the help of linear matrix inequality (LMI) method, robust passive controllers are designed so that the closed-loop system is robust stable and strictly passive. Furthermore, a convex optimization problem with LMI constraints is formulated to design robust passive controllers with the maximum dissipation rate. A numerical example illustrates the validity of the proposed method.
基金Project (60835004) supported by the National Natural Science Foundation of China
文摘A fuzzy sliding-mode control (FSMC) scheme based on T-S fuzzy models was proposed for the permanent magnet synchronous motor (PMSM) drive system to solve the speed tracking problem. A T-S fuzzy model was firstly formed to represent the nonlinear system of PMSM. For converting the tracking control into a stabilization problem, a new control design was proposed to define the internal desired states. Then, the FSMC controller for PMSM system with parameter variation and load disturbance was designed based on the fuzzy model. The performance of the proposed controller was verified by experimental results on PMSM system. The results show that the FSMC scheme can drive the dynamics of PMSM into a designated sliding surface in finite time and guarantee the property of asymptotical stability. The information of upper bound of modeling errors as well as perturbations is not required when using the FSMC controller.
基金work supported by Changwon National University in 2011-2012work partly supported by the second stage of Brain Korea 21 Projects
文摘Ship-mounted container cranes are challenging industrial applications of nonlinear pendulum-like systems with oscillating disturbance which can cause them unstable.Since wave-induced ship motion causes the hoisted container to swing during the transfer operation,the swing motion may be dangerously large and the operation must be stopped.In order to reduce payload pendulation of ship-mounted crane,nonlinear dynamics of ship-mounted crane is derived and a control method using T-S fuzzy model is proposed.Simulation results are given to illustrate the validity of the proposed design method and pendulation of ship-mounted crane is reduced significantly.
文摘A design method is presented for Takagi-Sugeno (T-S) fuzzy model based nonlinear sliding model controller. First, the closed-loop fuzzy system is divided into a set of dominant local linear systems according to operating sub-regions. In each sub-region the fuzzy system consists of nominal linear system and a group of interacting systems. Then the controller composed two parts is designed. One part is designed to control the nominal system, the other is designed to control the interacting systems with sliding mode theory. The proposed controller can improve the robusmess and gnarantee tracking performance of the fuzzy system. Stability is guaranteed without finding a common positive definite matrix.
文摘A robust attitude controller for hydrofoil catamaran throughout its operating envelope is proposed, based on Tagaki-Sugeno (T-S) fuzzy model. Firstly, T-S fuzzy model and robust attitude control strategy for hydrofoil catamaran is presented by use of linear matrix inequality (LMI) techniques. Secondly, a nonlinear mathematical model of hydrofoil catamaran is established, acting as the platform for further researches. The specialty in interpolation of T-S fuzzy model guarantees that feedback gain can be obtained smoothly, while boat's speed is shifting over the operating envelope. The external disturbances are also attenuated to achieve H ∞ control performance, meanwhile. Finally, based on such a boat, HC200B-A1, simulation researches demonstrate the design procedures and the effectiveness of fuzzy robust attitude controller.
文摘Security and reliability must be focused on control sys- tems firstly, and fault detection and diagnosis (FDD) is the main theory and technology. Now, there are many positive results in FDD for linear networked control systems (LNCSs), but nonlinear networked control systems (NNCSs) are less involved. Based on the T-S fuzzy-modeling theory, NNCSs are modeled and network random time-delays are changed into the unknown bounded uncertain part without changing its structure. Then a fuzzy state observer is designed and an observer-based fault detection approach for an NNCS is presented. The main results are given and the relative theories are proved in detail. Finally, some simulation results are given and demonstrate the proposed method is effective.
文摘The robust H∞ control problem of norm bounded uncertain discrete Takagi-Sugeno (T-S) fuzzy systems with state delay is addressed. First, by constructing an appropriate basis-dependent Lyapunov-Krasovskii function, a new delay-dependent sufficient condition on robust H∞-disturbance attenuation is presented, in which both robust stability and prescribed H∞ performance are guaranteed to be achieved. Then based on the condition, a delay-dependent robust Hoo controller design scheme is developed in term of a convex algorithm. Finally, examples are given to illustrate the effectiveness of the proposed method.
文摘This paper is concerned with a fuzzy robust H∞ control problem via output feedbackfor a class of uncertain nonlinear systems. The uncertain nonlinear systemsare represented by fuzzy Takagi-Sugeno (T-S) model, and a fuzzy controller is designedbased on the state observer. A sufficient condition for the existence of fuzzycontroller is given in terms of the linear matrix inequalities (LMIs) and the adaptivelaw. Based on Lyapunov stability theorem, the proposed fuzzy control scheme suchthat the desired H∞performance is achieved in the sense that all the closed-loopsignals are uniformly ultimately bounded (UUB). Simulation results indicate theeffectiveness of the developed control scheme. In this paper, a less conservativefuzzy tracking controller is proposed, where the matching condition and the upperbound are avoided. Comparing with the existing works, the dimension of the LMIsof this paper is reduced.
文摘A frequency-domain-based sufficient condition is derived to guarantee the globally asymptotic stability of the simplest Takagi-Sugeno (T-S) fuzzy control system by using the circle criterion. The analysis is performed in the frequency domain, and hence the condition is of great significance when the frequency-response method, which is widely used in the linear control theory and practice, is employed to synthesize the simplest T-S fuzzy controller. Besides, this sufficient condition is featured by a graphical interpretation, which makes the condition straightforward to be used. Comparisons are drawn between the performance of the simplest T-S fuzzy controller and that of the linear compensator. Two numerical examples are presented to demonstrate how this sufficient condition can be applied to both stable and unstable plants.
基金Project(2007AA04Z162) supported by the National High-Tech Research and Development Program of ChinaProjects(2006T089, 2009T062) supported by the University Innovation Team in the Educational Department of Liaoning Province, China
文摘In order to obtain accurate prediction model and compensate for the influence of model mismatch on the control performance of the system and avoid solving nonlinear programming problem,an adaptive fuzzy predictive functional control(AFPFC) scheme for multivariable nonlinear systems was proposed.Firstly,multivariable nonlinear systems were described based on Takagi-Sugeno(T-S) fuzzy models;assuming that the antecedent parameters of T-S models were kept,the consequent parameters were identified on-line by using the weighted recursive least square(WRLS) method.Secondly,the identified T-S models were linearized to be time-varying state space model at each sampling instant.Finally,by using linear predictive control technique the analysis solution of the optimal control law of AFPFC was established.The application results for pH neutralization process show that the absolute error between the identified T-S model output and the process output is smaller than 0.015;the tracking ability of the proposed AFPFC is superior to that of non-AFPFC(NAFPFC) for pH process without disturbances,the overshoot of the effluent pH value of AFPFC with disturbances is decreased by 50% compared with that of NAFPFC;when the process parameters of AFPFC vary with time the integrated absolute error(IAE) performance index still retains to be less than 200 compared with that of NAFPFC.