A novel centralized approach for Dynamic Spectrum Allocation (DSA) in the Cognitive Radio (CR) network is presented in this paper. Instead of giving the solution in terms of formulas modeling network environment such ...A novel centralized approach for Dynamic Spectrum Allocation (DSA) in the Cognitive Radio (CR) network is presented in this paper. Instead of giving the solution in terms of formulas modeling network environment such as linear programming or convex optimization, the new approach obtains the capability of iteratively on-line learning environment performance by using Reinforcement Learning (RL) algorithm after observing the variability and uncertainty of the heterogeneous wireless networks. Appropriate decision-making access actions can then be obtained by employing Fuzzy Inference System (FIS) which ensures the strategy being able to explore the possible status and exploit the experiences sufficiently. The new approach considers multi-objective such as spectrum efficiency and fairness between CR Access Points (AP) effectively. By interacting with the environment and accumulating comprehensive advantages, it can achieve the largest long-term reward expected on the desired objectives and implement the best action. Moreover, the present algorithm is relatively simple and does not require complex calculations. Simulation results show that the proposed approach can get better performance with respect to fixed frequency planning scheme or general dynamic spectrum allocation policy.展开更多
Based on fuzzy adaptive and dynamic surface(FADS),an integrated guidance and control(IGC)approach was proposed for large caliber naval gun guided projectile,which was robust to target maneuver,canard dynamic character...Based on fuzzy adaptive and dynamic surface(FADS),an integrated guidance and control(IGC)approach was proposed for large caliber naval gun guided projectile,which was robust to target maneuver,canard dynamic characteristics,and multiple constraints,such as impact angle,limited measurement of line of sight(LOS)angle rate and nonlinear saturation of canard deflection.Initially,a strict feedback cascade model of IGC in longitudinal plane was established,and extended state observer(ESO)was designed to estimate LOS angle rate and uncertain disturbances with unknown boundary inside and outside of system,including aerodynamic parameters perturbation,target maneuver and model errors.Secondly,aiming at zeroing LOS angle tracking error and LOS angle rate in finite time,a nonsingular terminal sliding mode(NTSM)was designed with adaptive exponential reaching law.Furthermore,combining with dynamic surface,which prevented the complex differential of virtual control laws,the fuzzy adaptive systems were designed to approximate observation errors of uncertain disturbances and to reduce chatter of control law.Finally,the adaptive Nussbaum gain function was introduced to compensate nonlinear saturation of canard deflection.The LOS angle tracking error and LOS angle rate were convergent in finite time and whole system states were uniform ultimately bounded,rigorously proven by Lyapunov stability theory.Hardware-in-the-loop simulation(HILS)and digital simulation experiments both showed FADS provided guided projectile with good guidance performance while striking targets with different maneuvering forms.展开更多
In this paper the fault tolerant synchronization of two chaotic systems based on fuzzy model and sample data is investigated. The problem of fault tolerant synchronization is formulated to study the global asymptotica...In this paper the fault tolerant synchronization of two chaotic systems based on fuzzy model and sample data is investigated. The problem of fault tolerant synchronization is formulated to study the global asymptotical stability of the error system with the fuzzy sampled-data controller which contains a state feedback controller and a fault compensator. The synchronization can be achieved no matter whether the fault occurs or not. To investigate the stability of the error system and facilitate the design of the fuzzy sampled-data controller, a Takagi Sugeno (T-S) fuzzy model is employed to represent the chaotic system dynamics. To acquire good performance and produce a less conservative analysis result, a new parameter-dependent Lyapunov-Krasovksii functional and a relaxed stabilization technique are considered. The stability conditions based on linear matrix inequality are obtained to achieve the fault tolerant synchronization of the chaotic systems. Finally, a numerical simulation is shown to verify the results.展开更多
This paper proposes an impulsive control scheme for chaotic systems consisting of Van der Pol oscillators coupled to linear oscillators (VDPL) based on their Takagi-Sugeno (T-S) fuzzy models. A T-S fuzzy model is ...This paper proposes an impulsive control scheme for chaotic systems consisting of Van der Pol oscillators coupled to linear oscillators (VDPL) based on their Takagi-Sugeno (T-S) fuzzy models. A T-S fuzzy model is utilized to represent the chaotic VDPL system. By using comparison method, a general asymptotical stability criterion by means of linear matrix inequality (LMI) is derived for the T-S fuzzy model of VDPL system with impulsive effects. The simulation results demonstrate the effectiveness of the proposed scheme.展开更多
This paper investigates the chaotification problem of a stable continuous-time T S fuzzy system. A simple nonlinear state time-delay feedback controller is designed by parallel distributed compensation technique. Then...This paper investigates the chaotification problem of a stable continuous-time T S fuzzy system. A simple nonlinear state time-delay feedback controller is designed by parallel distributed compensation technique. Then, the asymptotically approximate relationship between the controlled continuous-time T-S fuzzy system with time-delay and a discrete-time T-S fuzzy system is established. Based on the discrete-time T-S fuzzy system, it proves that the chaos in the discrete- time T-S fuzzy system satisfies the Li-Yorke definition by choosing appropriate controller parameters via the revised Marotto theorem. Finally, the effectiveness of the proposed chaotic anticontrol method is verified by a practical example.展开更多
The issue of the stability and controller design of Takagi-Sugeno(T-S) fuzzy control systems with time-delay is investigated under imperfect premise matching when the T-S fuzzy time-delay model and fuzzy controller ...The issue of the stability and controller design of Takagi-Sugeno(T-S) fuzzy control systems with time-delay is investigated under imperfect premise matching when the T-S fuzzy time-delay model and fuzzy controller do not share the same membership functions.A new stability criterion which contains the information of membership functions is derived.The new stability criterion is less conservative,and enhances the design flexibility.Two numerical examples are presented to illustrate the conservativeness and effectiveness of the proposed method.展开更多
Unlike the previous research works analyzing the stability of the T-S (Takagi-Sugeno) fuzzy model, an extension on the stability condition of T-S fuzzy systems with a different strategy is provided. In the strategy ...Unlike the previous research works analyzing the stability of the T-S (Takagi-Sugeno) fuzzy model, an extension on the stability condition of T-S fuzzy systems with a different strategy is provided. In the strategy a new variable, which is relative to the grade of fuzzy membership function, is introduced to the stability analysis and a new stability conclusion is deduced. The definition of stability condition in this paper is different from previous works, though they are similar in form. With the proposed method, the simulation in flight control law shows a better effectiveness.展开更多
A fuzzy sliding-mode control (FSMC) scheme based on T-S fuzzy models was proposed for the permanent magnet synchronous motor (PMSM) drive system to solve the speed tracking problem. A T-S fuzzy model was firstly forme...A fuzzy sliding-mode control (FSMC) scheme based on T-S fuzzy models was proposed for the permanent magnet synchronous motor (PMSM) drive system to solve the speed tracking problem. A T-S fuzzy model was firstly formed to represent the nonlinear system of PMSM. For converting the tracking control into a stabilization problem, a new control design was proposed to define the internal desired states. Then, the FSMC controller for PMSM system with parameter variation and load disturbance was designed based on the fuzzy model. The performance of the proposed controller was verified by experimental results on PMSM system. The results show that the FSMC scheme can drive the dynamics of PMSM into a designated sliding surface in finite time and guarantee the property of asymptotical stability. The information of upper bound of modeling errors as well as perturbations is not required when using the FSMC controller.展开更多
Fault diagnostics is important for safe operation of nuclear power plants(NPPs). In recent years, data-driven approaches have been proposed and implemented to tackle the problem, e.g., neural networks, fuzzy and neuro...Fault diagnostics is important for safe operation of nuclear power plants(NPPs). In recent years, data-driven approaches have been proposed and implemented to tackle the problem, e.g., neural networks, fuzzy and neurofuzzy approaches, support vector machine, K-nearest neighbor classifiers and inference methodologies. Among these methods, dynamic uncertain causality graph(DUCG)has been proved effective in many practical cases. However, the causal graph construction behind the DUCG is complicate and, in many cases, results redundant on the symptoms needed to correctly classify the fault. In this paper, we propose a method to simplify causal graph construction in an automatic way. The method consists in transforming the expert knowledge-based DCUG into a fuzzy decision tree(FDT) by extracting from the DUCG a fuzzy rule base that resumes the used symptoms at the basis of the FDT. Genetic algorithm(GA) is, then, used for the optimization of the FDT, by performing a wrapper search around the FDT: the set of symptoms selected during the iterative search are taken as the best set of symptoms for the diagnosis of the faults that can occur in the system. The effectiveness of the approach is shown with respect to a DUCG model initially built to diagnose 23 faults originally using 262 symptoms of Unit-1 in the Ningde NPP of the China Guangdong Nuclear Power Corporation. The results show that the FDT, with GA-optimized symptoms and diagnosis strategy, can drive the construction of DUCG and lower the computational burden without loss of accuracy in diagnosis.展开更多
The performance of genetic algorithm(GA) is determined by the capability of search and optimization for satisfactory solutions. The new adaptive genetic algorithm(AGA) is built for inducing suitable search and optimiz...The performance of genetic algorithm(GA) is determined by the capability of search and optimization for satisfactory solutions. The new adaptive genetic algorithm(AGA) is built for inducing suitable search and optimization relationship. The use of six fuzzy logic controllers(6FLCs) is proposed for dynamic control genetic operating parameters of a symbolic-coded GA. This paper uses AGA based on 6FLCs to deal with the travelling salesman problem (TSP). Experimental results show that AGA based on 6FLCs is more efficient than a standard GA in solving combinatorial optimization problems similar to TSP.展开更多
基金supported in part by National Science Fund for Distinguished Young Scholars project under Grant No.60725105National Basic Research Program of China (973 Pro-gram) under Grant No.2009CB320404+1 种基金National Natural Science Foundation of China under Grant No.61072068Fundamental Research Funds for the Central Universities under Grant No.JY10000901031
文摘A novel centralized approach for Dynamic Spectrum Allocation (DSA) in the Cognitive Radio (CR) network is presented in this paper. Instead of giving the solution in terms of formulas modeling network environment such as linear programming or convex optimization, the new approach obtains the capability of iteratively on-line learning environment performance by using Reinforcement Learning (RL) algorithm after observing the variability and uncertainty of the heterogeneous wireless networks. Appropriate decision-making access actions can then be obtained by employing Fuzzy Inference System (FIS) which ensures the strategy being able to explore the possible status and exploit the experiences sufficiently. The new approach considers multi-objective such as spectrum efficiency and fairness between CR Access Points (AP) effectively. By interacting with the environment and accumulating comprehensive advantages, it can achieve the largest long-term reward expected on the desired objectives and implement the best action. Moreover, the present algorithm is relatively simple and does not require complex calculations. Simulation results show that the proposed approach can get better performance with respect to fixed frequency planning scheme or general dynamic spectrum allocation policy.
基金supported by Naval Weapons and Equipment Pre-Research Project(Grant No.3020801010105).
文摘Based on fuzzy adaptive and dynamic surface(FADS),an integrated guidance and control(IGC)approach was proposed for large caliber naval gun guided projectile,which was robust to target maneuver,canard dynamic characteristics,and multiple constraints,such as impact angle,limited measurement of line of sight(LOS)angle rate and nonlinear saturation of canard deflection.Initially,a strict feedback cascade model of IGC in longitudinal plane was established,and extended state observer(ESO)was designed to estimate LOS angle rate and uncertain disturbances with unknown boundary inside and outside of system,including aerodynamic parameters perturbation,target maneuver and model errors.Secondly,aiming at zeroing LOS angle tracking error and LOS angle rate in finite time,a nonsingular terminal sliding mode(NTSM)was designed with adaptive exponential reaching law.Furthermore,combining with dynamic surface,which prevented the complex differential of virtual control laws,the fuzzy adaptive systems were designed to approximate observation errors of uncertain disturbances and to reduce chatter of control law.Finally,the adaptive Nussbaum gain function was introduced to compensate nonlinear saturation of canard deflection.The LOS angle tracking error and LOS angle rate were convergent in finite time and whole system states were uniform ultimately bounded,rigorously proven by Lyapunov stability theory.Hardware-in-the-loop simulation(HILS)and digital simulation experiments both showed FADS provided guided projectile with good guidance performance while striking targets with different maneuvering forms.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 50977008,60774048,and 60774093)the National High Technology Research and Development Program of China (Grant No. 2009AA04Z127)+1 种基金the Special Grant of Financial Support from China Postdoctoral Science Foundation (Grant No. 200902547)Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 200801451096)
文摘In this paper the fault tolerant synchronization of two chaotic systems based on fuzzy model and sample data is investigated. The problem of fault tolerant synchronization is formulated to study the global asymptotical stability of the error system with the fuzzy sampled-data controller which contains a state feedback controller and a fault compensator. The synchronization can be achieved no matter whether the fault occurs or not. To investigate the stability of the error system and facilitate the design of the fuzzy sampled-data controller, a Takagi Sugeno (T-S) fuzzy model is employed to represent the chaotic system dynamics. To acquire good performance and produce a less conservative analysis result, a new parameter-dependent Lyapunov-Krasovksii functional and a relaxed stabilization technique are considered. The stability conditions based on linear matrix inequality are obtained to achieve the fault tolerant synchronization of the chaotic systems. Finally, a numerical simulation is shown to verify the results.
文摘This paper proposes an impulsive control scheme for chaotic systems consisting of Van der Pol oscillators coupled to linear oscillators (VDPL) based on their Takagi-Sugeno (T-S) fuzzy models. A T-S fuzzy model is utilized to represent the chaotic VDPL system. By using comparison method, a general asymptotical stability criterion by means of linear matrix inequality (LMI) is derived for the T-S fuzzy model of VDPL system with impulsive effects. The simulation results demonstrate the effectiveness of the proposed scheme.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60904101,60972164 and 60904046)the Fundamental Research Funds for the Central Universities (Grant No. N090404009)the Research Foundation of Education Bureau of Liaoning Province,China (Grant No. 2009A544)
文摘This paper investigates the chaotification problem of a stable continuous-time T S fuzzy system. A simple nonlinear state time-delay feedback controller is designed by parallel distributed compensation technique. Then, the asymptotically approximate relationship between the controlled continuous-time T-S fuzzy system with time-delay and a discrete-time T-S fuzzy system is established. Based on the discrete-time T-S fuzzy system, it proves that the chaos in the discrete- time T-S fuzzy system satisfies the Li-Yorke definition by choosing appropriate controller parameters via the revised Marotto theorem. Finally, the effectiveness of the proposed chaotic anticontrol method is verified by a practical example.
基金Supported by the National Natural Science Foundation of China(60874084)the Academy of Finland(135225,127299)
文摘The issue of the stability and controller design of Takagi-Sugeno(T-S) fuzzy control systems with time-delay is investigated under imperfect premise matching when the T-S fuzzy time-delay model and fuzzy controller do not share the same membership functions.A new stability criterion which contains the information of membership functions is derived.The new stability criterion is less conservative,and enhances the design flexibility.Two numerical examples are presented to illustrate the conservativeness and effectiveness of the proposed method.
基金supported by the Aviation Science Foundation under Grant No.20110776001Zhejiang Provincial Natural Science Foundation under Grants No. Y1100696 and No.R1090052+1 种基金the Fundamental Research Funds for the Central Universities under Grant No.2011QNA4021National Natural Science Foundation of China under Grant No.61070003 and No.61071128
文摘Unlike the previous research works analyzing the stability of the T-S (Takagi-Sugeno) fuzzy model, an extension on the stability condition of T-S fuzzy systems with a different strategy is provided. In the strategy a new variable, which is relative to the grade of fuzzy membership function, is introduced to the stability analysis and a new stability conclusion is deduced. The definition of stability condition in this paper is different from previous works, though they are similar in form. With the proposed method, the simulation in flight control law shows a better effectiveness.
基金Project (60835004) supported by the National Natural Science Foundation of China
文摘A fuzzy sliding-mode control (FSMC) scheme based on T-S fuzzy models was proposed for the permanent magnet synchronous motor (PMSM) drive system to solve the speed tracking problem. A T-S fuzzy model was firstly formed to represent the nonlinear system of PMSM. For converting the tracking control into a stabilization problem, a new control design was proposed to define the internal desired states. Then, the FSMC controller for PMSM system with parameter variation and load disturbance was designed based on the fuzzy model. The performance of the proposed controller was verified by experimental results on PMSM system. The results show that the FSMC scheme can drive the dynamics of PMSM into a designated sliding surface in finite time and guarantee the property of asymptotical stability. The information of upper bound of modeling errors as well as perturbations is not required when using the FSMC controller.
文摘Fault diagnostics is important for safe operation of nuclear power plants(NPPs). In recent years, data-driven approaches have been proposed and implemented to tackle the problem, e.g., neural networks, fuzzy and neurofuzzy approaches, support vector machine, K-nearest neighbor classifiers and inference methodologies. Among these methods, dynamic uncertain causality graph(DUCG)has been proved effective in many practical cases. However, the causal graph construction behind the DUCG is complicate and, in many cases, results redundant on the symptoms needed to correctly classify the fault. In this paper, we propose a method to simplify causal graph construction in an automatic way. The method consists in transforming the expert knowledge-based DCUG into a fuzzy decision tree(FDT) by extracting from the DUCG a fuzzy rule base that resumes the used symptoms at the basis of the FDT. Genetic algorithm(GA) is, then, used for the optimization of the FDT, by performing a wrapper search around the FDT: the set of symptoms selected during the iterative search are taken as the best set of symptoms for the diagnosis of the faults that can occur in the system. The effectiveness of the approach is shown with respect to a DUCG model initially built to diagnose 23 faults originally using 262 symptoms of Unit-1 in the Ningde NPP of the China Guangdong Nuclear Power Corporation. The results show that the FDT, with GA-optimized symptoms and diagnosis strategy, can drive the construction of DUCG and lower the computational burden without loss of accuracy in diagnosis.
文摘The performance of genetic algorithm(GA) is determined by the capability of search and optimization for satisfactory solutions. The new adaptive genetic algorithm(AGA) is built for inducing suitable search and optimization relationship. The use of six fuzzy logic controllers(6FLCs) is proposed for dynamic control genetic operating parameters of a symbolic-coded GA. This paper uses AGA based on 6FLCs to deal with the travelling salesman problem (TSP). Experimental results show that AGA based on 6FLCs is more efficient than a standard GA in solving combinatorial optimization problems similar to TSP.