期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
基于t分布混合模型的抗差关联算法 被引量:12
1
作者 李保珠 董云龙 +1 位作者 李秀友 关键 《电子与信息学报》 EI CSCD 北大核心 2017年第7期1774-1778,共5页
针对传感器系统误差和观测目标不完全一致的情况下目标航迹关联中鲁棒性问题,该文提出一种基于t分布混合模型的抗差关联算法。将航迹关联问题转化为图像匹配中的非刚性点集匹配问题,针对非共同观测目标影响关联性能的问题,将非共同观测... 针对传感器系统误差和观测目标不完全一致的情况下目标航迹关联中鲁棒性问题,该文提出一种基于t分布混合模型的抗差关联算法。将航迹关联问题转化为图像匹配中的非刚性点集匹配问题,针对非共同观测目标影响关联性能的问题,将非共同观测目标的航迹视为图像匹配中的异常点,建立了对异常点具有更好鲁棒性的重拖尾t分布混合模型,利用期望最大化(EM)算法求解t分布混合模型的闭合解,在求解中为了确保航迹点间的运动一致性(CPD),加入Tikhonov正则项。最后通过实验仿真验证,所提算法在系统误差和观测目标不完全一致情况下的鲁棒性和有效性。 展开更多
关键词 航迹关联 系统误差 t分布混合模型 期望最大化算法 运动一致性
在线阅读 下载PDF
基于t分布混合模型的点集非刚性配准算法 被引量:5
2
作者 周志勇 薛维琴 +3 位作者 郑健 蒯多杰 张涛 胡粟 《光学精密工程》 EI CAS CSCD 北大核心 2013年第9期2405-2420,共16页
考虑高斯混合模型(TMM)的点集非刚性配准算法易受异常点和重尾点的影响,提出了基于t分布混合模型的运动一致性非刚性配准算法。通过期望最大化(EM)框架的完整数据定义将高斯混合模型推广为t分布混合模型,使用EM算法最小化参数的条件期... 考虑高斯混合模型(TMM)的点集非刚性配准算法易受异常点和重尾点的影响,提出了基于t分布混合模型的运动一致性非刚性配准算法。通过期望最大化(EM)框架的完整数据定义将高斯混合模型推广为t分布混合模型,使用EM算法最小化参数的条件期望获得非刚性配准参数的闭合解。在EM算法中计算浮动点集各个点的先验权重,减小异常点和重尾点对配准结果的影响;计算浮动点集各个点的自由度,自适应地改变每个点的概率密度分布模型,提高算法的鲁棒性,并避免了异常点水平估计误差对配准结果的影响。在t分布混合模型的条件期望函数中加入点集位移的正则项,使邻近点具有运动一致性(CPD)。仿真数据表明,当噪声水平很高时,TMM-CPD仍可以精确配准点集,且误差仅为对比算法的1/10。真实图像的近似椭圆状分布、管状分布和三维点云状分布的点集配准结果表明,TMM-CPD的配准误差仅为对比算法的42.0%、80.1%和77.5%。实验表明,TMM-CPD配准含有重尾点和异常点的点集,具有精度高、鲁棒性好和受重尾点与异常点干扰小等优点。 展开更多
关键词 t分布混合模型 特征点配准 非刚性配准 期望最大化算法
在线阅读 下载PDF
含局部空间约束的t分布混合模型的点集配准 被引量:4
3
作者 周志勇 李莉华 +3 位作者 郑健 蒯多杰 胡粟 张涛 《自动化学报》 EI CSCD 北大核心 2014年第4期683-696,共14页
基于高斯混合模型(Gaussian mixture model,GMM)的点集非刚性配准算法易受重尾点和异常点影响,提出含局部空间约束的t分布混合模型的点集非刚性配准算法.通过期望最大化(Expectation maximization,EM)框架将高斯混合模型推广为t分布混... 基于高斯混合模型(Gaussian mixture model,GMM)的点集非刚性配准算法易受重尾点和异常点影响,提出含局部空间约束的t分布混合模型的点集非刚性配准算法.通过期望最大化(Expectation maximization,EM)框架将高斯混合模型推广为t分布混合模型;把Dirichlet分布作为浮动点的先验权重,并构造含局部空间约束性质的Dirichlet分布参数.使用EM算法获得配准参数的闭合解;计算浮动点的自由度,改变其概率密度分布,避免异常点水平估计误差.实验表明,本文提出的配准算法具有配准误差小、鲁棒性好、抗干扰能力强等优点. 展开更多
关键词 t分布混合模型 Dirichlet分布 点集 非刚性配准 期望最大化算法
在线阅读 下载PDF
基于t分布混合模型的半监督网络流分类方法 被引量:2
4
作者 董育宁 朱善胜 赵家杰 《计算机工程与应用》 CSCD 北大核心 2018年第10期31-38,共8页
针对传统高斯分布容易受到数据样本边缘值和离群点噪声的影响,改用t分布替代原有的高斯混合模型,并使用期望最大化(Expectation Maximization,EM)算法对网络流数据样本进行t分布混合模型的建模。为降低EM算法的迭代次数,对t分布混合模... 针对传统高斯分布容易受到数据样本边缘值和离群点噪声的影响,改用t分布替代原有的高斯混合模型,并使用期望最大化(Expectation Maximization,EM)算法对网络流数据样本进行t分布混合模型的建模。为降低EM算法的迭代次数,对t分布混合模型进行了改进,用理论和实验验证了算法的有效性,并对网络多媒体业务流进行了分类研究。实验表明,提出的算法有较高的分类准确率,拟合的模型要优于传统的K-Means算法和传统的高斯混合模型的EM算法。 展开更多
关键词 网络流分类 t分布混合模型 期望最大化算法 半监督分类
在线阅读 下载PDF
采用混合t分布粒子滤波器的视觉跟踪(英文) 被引量:3
5
作者 李少军 朱振福 《红外与激光工程》 EI CSCD 北大核心 2011年第7期1387-1396,共10页
由于目标数量的变化,观测数据的岐义性和目标间的遮挡,多目标视觉跟踪问题面临多种困难。基于目标分布的有限t分布混合模型提出了一种混合t分布粒子滤波器以实现多目标跟踪。在算法中,每个被跟踪目标指派一个独立的粒子滤波器,显式处理... 由于目标数量的变化,观测数据的岐义性和目标间的遮挡,多目标视觉跟踪问题面临多种困难。基于目标分布的有限t分布混合模型提出了一种混合t分布粒子滤波器以实现多目标跟踪。在算法中,每个被跟踪目标指派一个独立的粒子滤波器,显式处理当新目标出现在场景中时对应粒子滤波器的初始化,当被跟踪目标消失时,对应粒子滤波器的删除。混合t分布粒子滤波器算法不仅能够跟踪多种类型的多目标,还能够持续跟踪遮挡消除之后的多目标。为了展现混合t分布粒子滤波器的跟踪性能,完成了基于颜色分布的跟踪多种不同颜色和相同颜色的多目标实验,对比了混合t分布粒子滤波器,混合粒子滤波器以及Boosted粒子滤波器的跟踪性能。实验结果表明:文中算法不仅能够跟踪数量可变的多目标,进行实时计算,而且具有更好的鲁棒性。 展开更多
关键词 多目标视觉跟踪 有限t分布混合模型 混合t分布粒子滤波器 序列蒙特卡洛方法 混合粒子滤波器 Boosted粒子滤波器
在线阅读 下载PDF
基于Contourlet变换和T混合模型的医学图像融合算法
6
作者 徐春艳 宋余庆 +1 位作者 刘哲 包翔 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2017年第1期27-32,共6页
医学图像融合已经成为医学图像处理领域的热门研究之一.针对基于高斯混合模型的期望最大值融合算法容易导致局部细节丢失的问题,提出了一种基于Contourlet变换的T混合分布图像融合方法.首先通过GIHS(Generalized Intensity-Hue-Saturati... 医学图像融合已经成为医学图像处理领域的热门研究之一.针对基于高斯混合模型的期望最大值融合算法容易导致局部细节丢失的问题,提出了一种基于Contourlet变换的T混合分布图像融合方法.首先通过GIHS(Generalized Intensity-Hue-Saturation)变换将彩色医学图像从RGB颜色空间变换到GIHS空间,进而通过轮廓波变换(Contourlet)获得高频和低频两个部分;然后采用系数绝对值选大法和基于T分布混合模型期望最大法分别对高频部分和低频部分进行融合;最后利用Contourlet反变换获得新强度,将其和PET图像的其他分量通过GIHS反变换得到融合结果.该方法相比于其他的融合方法,具有信息量丰富、清晰度高等优点. 展开更多
关键词 t分布混合模型 CONtOURLEt变换 图像融合 GIHS
在线阅读 下载PDF
基于差分曲率分组混合模型的脑部MRI图像超分辨重建 被引量:1
7
作者 王文倩 李敏 +1 位作者 黄宇 邓小于 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2023年第6期925-934,共10页
核磁共振成像(magnetic resonance imaging,MRI)能够提供丰富的病理信息,在脑损伤的诊断和治疗中具有重要意义,受采样时间和现有医疗设备的限制,临床上很难获得高分辨率的MRI图像.为此,提出一种基于差分曲率分组混合模型的超分辨重建方... 核磁共振成像(magnetic resonance imaging,MRI)能够提供丰富的病理信息,在脑损伤的诊断和治疗中具有重要意义,受采样时间和现有医疗设备的限制,临床上很难获得高分辨率的MRI图像.为此,提出一种基于差分曲率分组混合模型的超分辨重建方法.首先在梯度特征提取的基础上引入差分曲率算法,进一步检测图像的边缘、斜坡等特征结构,并将特征块分为平滑区域、纹理区域和边缘区域3组;然后基于学生t分布混合模型分别学习3组特征区域的模型参数;最后选取多个似然概率较大的子分布共同重建高分辨率图像块.在癌症成像档案库数据集上的实验结果表明,在×2,×3和×4超分辨任务下,所提方法的平均峰值信噪比分别为41.36 dB,35.01 dB和31.32 dB,平均结构相似度分别为0.9848,0.9415和0.8795;与现有的超分辨重建方法相比,该方法重建的MRI图像纹理细节更丰富、边缘更清晰,并且重建时间更短. 展开更多
关键词 脑部MRI图像 超分辨重建 差分曲率 学生t分布混合模型
在线阅读 下载PDF
基于聚类改进的河流水体遥感图像处理算法 被引量:5
8
作者 屈艳红 《人民长江》 北大核心 2022年第3期196-201,共6页
采用合适的图像分割技术及数据模型,是准确解译卫星遥感河流影像的关键环节。针对当前存在的技术问题,从提高遥感河流图像分割的准确性与抗噪性出发,提出了一种基于烟花优化K-Means聚类与学生t分布混合模型(Student′s t-distribution M... 采用合适的图像分割技术及数据模型,是准确解译卫星遥感河流影像的关键环节。针对当前存在的技术问题,从提高遥感河流图像分割的准确性与抗噪性出发,提出了一种基于烟花优化K-Means聚类与学生t分布混合模型(Student′s t-distribution Mixture Model,TMM)的遥感图像分割新算法。该算法首先采用烟花算法(Fireworks Algorithm,FA)来求解K-Means聚类的初始聚类中心,提高了聚类效果,可获得遥感图像的初步分割结果。然后,以初步分割结果作为初始值,建立学生t分布混合模型(TMM),采用EM算法确定参数最终值,并借助Bayesian公式完成图像二次分割。最后进行了算例验证,验证结果显示新方法在分割精度和稳定性方面,都较现有算法表现更优,可更为有效地实现遥感河流影像的解译。 展开更多
关键词 遥感图像 K-MEANS 聚类原理 学生t分布混合模型 烟花算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部