An adaptive stable observer with output current online identification strategy for the auxiliary inverters applied in advanced electric trains, such as high speed railway, urban rail, subway and maglev trains, is prop...An adaptive stable observer with output current online identification strategy for the auxiliary inverters applied in advanced electric trains, such as high speed railway, urban rail, subway and maglev trains, is proposed. The designed observer is used to estimate the state variables, i.e. controllable duty ratio and current components in d-q-o rotary reference frame. The convergence of the observer estimation error is analyzed with consideration of uncertain level variation of input voltage at direct current(DC) side and sufficient conditions are given to prove its practical stability. Experimental results are shown to confirm the effectiveness of the proposed observer.展开更多
Security and reliability of inverter are an indispensable part in power electronic system. Faults of inverter are usually caused by switch elements’ operating fault. Taking the inverter with hysteresis current contro...Security and reliability of inverter are an indispensable part in power electronic system. Faults of inverter are usually caused by switch elements’ operating fault. Taking the inverter with hysteresis current control as the research object, a universal open-circuit fault location method which can be applied to multiple control strategies is proposed in the paper. If the switch open-circuit fault happens in inverter, the output phase current will inevitably change, which can be used as a characteristic for diagnosis, combined with the comparison of phase-current direction before and after the fault occurrence, to diagnose and locate the open-circuit fault in a half cycle. Moreover, this method requires neither system control signals nor sensor. The validity, reliability and limitation of the fault location method in the paper are verified and analyzed through dSPACE-based experiment platform.展开更多
This paper proposes a new Predictive Direct Power Control(P-DPC) solution for three-phase grid-connected inverters, which combines direct power control strategy with the predictive control strategy and space vector pu...This paper proposes a new Predictive Direct Power Control(P-DPC) solution for three-phase grid-connected inverters, which combines direct power control strategy with the predictive control strategy and space vector pulse width modulation(SVPWM), obtaining both high transient performance and a constant switching frequency. This control solution can achieve decoupling control for active and reactive power and an adjustable power factor. Meanwhile, the grid-connected current can approximately be sinusoidal. The feasibility and advantages of the control strategy are verified by the simulation and experiment compared with another existing P-DPC.展开更多
For multiple grid-connected inverters with active filter function,it makes sense to regulate every unit to output maximum active power from photovoltaic arrays,as well as eliminate the harmonic due to the non-linear l...For multiple grid-connected inverters with active filter function,it makes sense to regulate every unit to output maximum active power from photovoltaic arrays,as well as eliminate the harmonic due to the non-linear loads connected to the electric networks.Naturally,a centralized control coordination strategy was proposed for the purpose of high facility utilization,good harmonic compensation ability and unwanted overcompensation condition.Based on a vector decoupling control scheme and generalized instantaneous reactive power theory,the solution was to allocate the harmonic eliminating task for every inverter according to the instantaneous power margin of each.The grid current always keeps sinusoidal in spite of non-linear load change and output active power change for any inverter.The simulation results validate the efficacy of the proposed coordination strategy.展开更多
The traditional deadbeat control for UPS inverters has a robustness problem. The parametric imprecision can greatly harm the stability of the system, which restricts the application. A novel robust deadbeat control me...The traditional deadbeat control for UPS inverters has a robustness problem. The parametric imprecision can greatly harm the stability of the system, which restricts the application. A novel robust deadbeat control method is proposed in this paper to deal with the problem. In the proposed control method, a proportional element is added to the traditional deadbeat control in order to improve the robustness to parametric imprecision. To eliminate the error between output voltage and voltage reference caused by environmental noise and parametric deviation, a model reference adaptive regulator is also added to the control method. A 1kVA prototype is built based on DSP. Theoretical analysis and experimental results show that the robustness for parametric variation of the proposed method is much better than the traditional deadbeat control. The system can remain stable even when the systemic parameters have a large deviation from calculating parameters. The system has small static error and fast dynamic response with the new control method. This method is easy to realize in DSP and is suitable for full digital realization of UPS.展开更多
This paper mainly focuses on stability analysis of the nonlinear active disturbance rejection control(ADRC)-based control system and its applicability to real world engineering problems.Firstly,the nonlinear ADRC(NLAD...This paper mainly focuses on stability analysis of the nonlinear active disturbance rejection control(ADRC)-based control system and its applicability to real world engineering problems.Firstly,the nonlinear ADRC(NLADRC)-based control system is transformed into a multi-input multi-output(MIMO)Lurie-like system,then sufficient condition for absolute stability based on linear matrix inequality(LMI)is proposed.Since the absolute stability is a kind of global stability,Lyapunov stability is further considered.The local asymptotical stability can be deter-mined by whether a matrix is Hurwitz or not.Using the inverted pendulum as an example,the proposed methods are verified by simulation and experiment,which show the valuable guidance for engineers to design and analyze the NL ADRC-based control system.展开更多
基金Project(61273158)supported by the National Natural Science Foundation of China
文摘An adaptive stable observer with output current online identification strategy for the auxiliary inverters applied in advanced electric trains, such as high speed railway, urban rail, subway and maglev trains, is proposed. The designed observer is used to estimate the state variables, i.e. controllable duty ratio and current components in d-q-o rotary reference frame. The convergence of the observer estimation error is analyzed with consideration of uncertain level variation of input voltage at direct current(DC) side and sufficient conditions are given to prove its practical stability. Experimental results are shown to confirm the effectiveness of the proposed observer.
基金Projects(2016YFB1200401,2017YFB1200801)supported by the National Key R&D Program of China
文摘Security and reliability of inverter are an indispensable part in power electronic system. Faults of inverter are usually caused by switch elements’ operating fault. Taking the inverter with hysteresis current control as the research object, a universal open-circuit fault location method which can be applied to multiple control strategies is proposed in the paper. If the switch open-circuit fault happens in inverter, the output phase current will inevitably change, which can be used as a characteristic for diagnosis, combined with the comparison of phase-current direction before and after the fault occurrence, to diagnose and locate the open-circuit fault in a half cycle. Moreover, this method requires neither system control signals nor sensor. The validity, reliability and limitation of the fault location method in the paper are verified and analyzed through dSPACE-based experiment platform.
基金supported by the national 863 program (2011AA050204)
文摘This paper proposes a new Predictive Direct Power Control(P-DPC) solution for three-phase grid-connected inverters, which combines direct power control strategy with the predictive control strategy and space vector pulse width modulation(SVPWM), obtaining both high transient performance and a constant switching frequency. This control solution can achieve decoupling control for active and reactive power and an adjustable power factor. Meanwhile, the grid-connected current can approximately be sinusoidal. The feasibility and advantages of the control strategy are verified by the simulation and experiment compared with another existing P-DPC.
基金Project(51107111)supported by the National Natural Science Foundation of China
文摘For multiple grid-connected inverters with active filter function,it makes sense to regulate every unit to output maximum active power from photovoltaic arrays,as well as eliminate the harmonic due to the non-linear loads connected to the electric networks.Naturally,a centralized control coordination strategy was proposed for the purpose of high facility utilization,good harmonic compensation ability and unwanted overcompensation condition.Based on a vector decoupling control scheme and generalized instantaneous reactive power theory,the solution was to allocate the harmonic eliminating task for every inverter according to the instantaneous power margin of each.The grid current always keeps sinusoidal in spite of non-linear load change and output active power change for any inverter.The simulation results validate the efficacy of the proposed coordination strategy.
文摘The traditional deadbeat control for UPS inverters has a robustness problem. The parametric imprecision can greatly harm the stability of the system, which restricts the application. A novel robust deadbeat control method is proposed in this paper to deal with the problem. In the proposed control method, a proportional element is added to the traditional deadbeat control in order to improve the robustness to parametric imprecision. To eliminate the error between output voltage and voltage reference caused by environmental noise and parametric deviation, a model reference adaptive regulator is also added to the control method. A 1kVA prototype is built based on DSP. Theoretical analysis and experimental results show that the robustness for parametric variation of the proposed method is much better than the traditional deadbeat control. The system can remain stable even when the systemic parameters have a large deviation from calculating parameters. The system has small static error and fast dynamic response with the new control method. This method is easy to realize in DSP and is suitable for full digital realization of UPS.
基金supported by the National Natural Science Foundation of China(61836001).
文摘This paper mainly focuses on stability analysis of the nonlinear active disturbance rejection control(ADRC)-based control system and its applicability to real world engineering problems.Firstly,the nonlinear ADRC(NLADRC)-based control system is transformed into a multi-input multi-output(MIMO)Lurie-like system,then sufficient condition for absolute stability based on linear matrix inequality(LMI)is proposed.Since the absolute stability is a kind of global stability,Lyapunov stability is further considered.The local asymptotical stability can be deter-mined by whether a matrix is Hurwitz or not.Using the inverted pendulum as an example,the proposed methods are verified by simulation and experiment,which show the valuable guidance for engineers to design and analyze the NL ADRC-based control system.