This article studies the existence and uniqueness of the mild solution of a family of control systems with a delay that are governed by the nonlinear fractional evolution differential equations in Banach spaces.Moreov...This article studies the existence and uniqueness of the mild solution of a family of control systems with a delay that are governed by the nonlinear fractional evolution differential equations in Banach spaces.Moreover,we establish the controllability of the considered system.To do so,first,we investigate the approximate controllability of the corresponding linear system.Subsequently,we prove the nonlinear system is approximately controllable if the corresponding linear system is approximately controllable.To reach the conclusions,the theory of resolvent operators,the Banach contraction mapping principle,and fixed point theorems are used.While concluding,some examples are given to demonstrate the efficacy of the proposed results.展开更多
We find the exact forms of meromorphic solutions of the nonlinear differential equations■,n≥3,k≥1,where q,Q are nonzero polynomials,Q■Const.,and p_(1),p_(2),α_(1),α_(2)are nonzero constants withα_(1)≠α_(2).Co...We find the exact forms of meromorphic solutions of the nonlinear differential equations■,n≥3,k≥1,where q,Q are nonzero polynomials,Q■Const.,and p_(1),p_(2),α_(1),α_(2)are nonzero constants withα_(1)≠α_(2).Compared with previous results on the equation p(z)f^(3)+q(z)f"=-sinα(z)with polynomial coefficients,our results show that the coefficient of the term f^((k))perturbed by multiplying an exponential function will affect the structure of its solutions.展开更多
In this paper, sane sufficient conditions are obtained for the oscillation for solutions of systems of high order partial differential equations of neutral type.
In this paper,by making use of the calculous technique and some results of the impulsive differential inequality,oscillatory properties of the solutions of certain nonlinear impulsive delay hyperbolic partial differen...In this paper,by making use of the calculous technique and some results of the impulsive differential inequality,oscillatory properties of the solutions of certain nonlinear impulsive delay hyperbolic partial differential equations with nonlinear diffusion coefficient are investigated.Sufficient conditions for oscillations of such equations are obtained.展开更多
In this paper, some sufficient conditions are obtained for the oscillation of solutions for a class of second order nonlinear neutral partial differential equations with continuous distribution delay under Robin and D...In this paper, some sufficient conditions are obtained for the oscillation of solutions for a class of second order nonlinear neutral partial differential equations with continuous distribution delay under Robin and Dirichlet's boundary value conditions.展开更多
In this paper, some sufficient conditions are obtained for the oscillation for solutions of systems of high order partial differential equations of neutral type.
The COVID-19 outbreak has significantly disrupted the lives of individuals worldwide.Following the lifting of COVID-19 interventions,there is a heightened risk of future outbreaks from other circulating respiratory in...The COVID-19 outbreak has significantly disrupted the lives of individuals worldwide.Following the lifting of COVID-19 interventions,there is a heightened risk of future outbreaks from other circulating respiratory infections,such as influenza-like illness(ILI).Accurate prediction models for ILI cases are crucial in enabling governments to implement necessary measures and persuade individuals to adopt personal precautions against the disease.This paper aims to provide a forecasting model for ILI cases with actual cases.We propose a specific model utilizing the partial differential equation(PDE)that will be developed and validated using real-world data obtained from the Chinese National Influenza Center.Our model combines the effects of transboundary spread among regions in China mainland and human activities’impact on ILI transmission dynamics.The simulated results demonstrate that our model achieves excellent predictive performance.Additionally,relevant factors influencing the dissemination are further examined in our analysis.Furthermore,we investigate the effectiveness of travel restrictions on ILI cases.Results can be used to utilize to mitigate the spread of disease.展开更多
This paper investigates the oscillatory and nonoscillatory behaviour of solu- tions of a class of third order nonlinear differential equations. Results extend and improve some known results in the literature.
A class of second order nonlinear differential equations with delay depenging on the unknown function of the fromin the case where ∫0∞ ds/r(s) < ∞ is studied. Various classifications of their eventually positive...A class of second order nonlinear differential equations with delay depenging on the unknown function of the fromin the case where ∫0∞ ds/r(s) < ∞ is studied. Various classifications of their eventually positive solutions are given in terms of their asymptotic magnitudes, and necessary as well as sufficient conditions for the existence of these solutions are also obtained.展开更多
In this paper, the second order nonlinear elliptic differential equations (E) (n)Sigma (i,j=1) partial derivative/partial derivativex(j)[a(i,j)(x,y) partial derivative/partial derivativex(j)y] + q(x)f(y) = e(x) are co...In this paper, the second order nonlinear elliptic differential equations (E) (n)Sigma (i,j=1) partial derivative/partial derivativex(j)[a(i,j)(x,y) partial derivative/partial derivativex(j)y] + q(x)f(y) = e(x) are considered in an exterior Omega subset of R-n, where q(x) is allowed to change sign. Some sufficient conditions for any solutions y(x) of (E) to be satisfied liminf\\x\--> infinity \y(x)\ = 0 are obtained. Particularly, these results improve the previous results for second order ordinary differential equations.展开更多
This paper deals with oscillatory /nonoscillatory behaviour of solutions of thirdorder nonlinear differential equations of the formwhere a,b,c E C([a,oo),R) such that a(t) does not change sign, b(t) 5 0, c(t) > 0,f...This paper deals with oscillatory /nonoscillatory behaviour of solutions of thirdorder nonlinear differential equations of the formwhere a,b,c E C([a,oo),R) such that a(t) does not change sign, b(t) 5 0, c(t) > 0,f∈C(R, R) such that (f(y)/y) ≥ β > 0 for y ≠ 0 and γ > 0 is a quotient of odd integers.It has been shown, under certain conditions on coefficient functions, that a solution of (1)and (2) which Las a zero is oscillatory and the nonoscillatory solutions of these equationstend to zero as t → ∞. The motivation for this work came from the observation that thewhere al b, c are constants such that b≤ 0, c > 0, has an oscillatory solution if and only ifand all nonoscillatory solutions of (3) tend to zero if and only if the equation has anoscillatory solution.展开更多
This paper proposes a lattice Boltzmann model with an amending function for one-dimensional nonlinear partial differential equations (NPDEs) in the form ut +αuux +βu^nuz +γuxx +δuzxx +ζxxxx = 0. This model...This paper proposes a lattice Boltzmann model with an amending function for one-dimensional nonlinear partial differential equations (NPDEs) in the form ut +αuux +βu^nuz +γuxx +δuzxx +ζxxxx = 0. This model is different from existing models because it lets the time step be equivalent to the square of the space step and derives higher accuracy and nonlinear terms in NPDEs. With the Chapman-Enskog expansion, the governing evolution equation is recovered correctly from the continuous Boltzmann equation. The numerical results agree well with the analytical solutions.展开更多
In this paper, we consider the positive solutions of fractional three-point boundary value problem of the form Dο^α+u(t)+f(t,u(t),u'(t),…,u^(n-3)(5),u^(n-2)(t))=0,u^(i)(0)=0,0≤i≤n-2,u^(n-...In this paper, we consider the positive solutions of fractional three-point boundary value problem of the form Dο^α+u(t)+f(t,u(t),u'(t),…,u^(n-3)(5),u^(n-2)(t))=0,u^(i)(0)=0,0≤i≤n-2,u^(n-2)(1)-βu^(n-2)(ξ)=0,where 0〈t〈1,n-1〈α≤n,n≥2,ξ Е(0,1),βξ^a-n〈1. We first transform it into another equivalent boundary value problem. Then, we derive the Green's function for the equivalent boundary value problem and show that it satisfies certain properties. At last, by using some fixed-point theorems, we obtain the existence of positive solution for this problem. Example is given to illustrate the effectiveness of our result.展开更多
By using the averaging technique, we obtain new oscillation criteria for second order delay differential equation with nonlinear neutral term. These results generalize and improve some known results about neutral dela...By using the averaging technique, we obtain new oscillation criteria for second order delay differential equation with nonlinear neutral term. These results generalize and improve some known results about neutral delay differential equation of second order.展开更多
In this paper, we use the concentration-compactness principle together with the Mountain Pass Lemma to get the existence of nontrivial solutions and the existence of infinitely many solutions of the problem need not b...In this paper, we use the concentration-compactness principle together with the Mountain Pass Lemma to get the existence of nontrivial solutions and the existence of infinitely many solutions of the problem need not be compact operators from E to R~1.展开更多
In this paper the generalized nonlinear Euler differential equation t^2k(tu')u''+ t(f(u) + k(tu'))u' + g(u) = 0 is considered. Here the functions f(u), g(u) and k(u) satisfy smoothness conditio...In this paper the generalized nonlinear Euler differential equation t^2k(tu')u''+ t(f(u) + k(tu'))u' + g(u) = 0 is considered. Here the functions f(u), g(u) and k(u) satisfy smoothness conditions which guarantee the uniqueness of solutions of initial value problems, however, no conditions of sub(super) linearity are assumed. W'e present some necessary and sufficient conditions and some tests for the equivalent planar system to have or fail to have property (X^+), which is very important for the existence of periodic solutions and oscillation theory.展开更多
The present paper deals with the numerical solution of time-fractional partial differential equations using the element-free Galerkin (EFG) method, which is based on the moving least-square approximation. Compared w...The present paper deals with the numerical solution of time-fractional partial differential equations using the element-free Galerkin (EFG) method, which is based on the moving least-square approximation. Compared with numerical methods based on meshes, the EFG method for time-fractional partial differential equations needs only scattered nodes instead of meshing the domain of the problem. It neither requires element connectivity nor suffers much degradation in accuracy when nodal arrangements are very irregular. In this method, the first-order time derivative is replaced by the Caputo fractional derivative of order α(0 〈 α≤ 1). The Galerkin weak form is used to obtain the discrete equations, and the essential boundary conditions are enforced by the penalty method. Several numerical examples are presented and the results we obtained are in good agreement with the exact solutions.展开更多
In this paper, we investigate the existence of solution for a class of impulse boundary value problem of nonlinear fractional functional differential equation of mixed type. We obtain the existence results of solution...In this paper, we investigate the existence of solution for a class of impulse boundary value problem of nonlinear fractional functional differential equation of mixed type. We obtain the existence results of solution by applying some well-known fixed point theorems. An example is given to illustrate the effectiveness of our result.展开更多
This paper is concerned with the oscillation of nonlinear partial difference equations with continuous variables and the corresponding dual equations. Several sufficientconditions are obtained for the oscillation of t...This paper is concerned with the oscillation of nonlinear partial difference equations with continuous variables and the corresponding dual equations. Several sufficientconditions are obtained for the oscillation of these equations.展开更多
Since December 2019,the COVID-19 epidemic has repeatedly hit countries around the world due to various factors such as trade,national policies and the natural environment.To closely monitor the emergence of new COVID-...Since December 2019,the COVID-19 epidemic has repeatedly hit countries around the world due to various factors such as trade,national policies and the natural environment.To closely monitor the emergence of new COVID-19 clusters and ensure high prediction accuracy,we develop a new prediction framework for studying the spread of epidemic on networks based on partial differential equations(PDEs),which captures epidemic diffusion along the edges of a network driven by population flow data.In this paper,we focus on the effect of the population movement on the spread of COVID-19 in several cities from different geographic regions in China for describing the transmission characteristics of COVID-19.Experiment results show that the PDE model obtains relatively good prediction results compared with several typical mathematical models.Furthermore,we study the effectiveness of intervention measures,such as traffic lockdowns and social distancing,which provides a new approach for quantifying the effectiveness of the government policies toward controlling COVID-19 via the adaptive parameters of the model.To our knowledge,this work is the first attempt to apply the PDE model on networks with Baidu Migration Data for COVID-19 prediction.展开更多
文摘This article studies the existence and uniqueness of the mild solution of a family of control systems with a delay that are governed by the nonlinear fractional evolution differential equations in Banach spaces.Moreover,we establish the controllability of the considered system.To do so,first,we investigate the approximate controllability of the corresponding linear system.Subsequently,we prove the nonlinear system is approximately controllable if the corresponding linear system is approximately controllable.To reach the conclusions,the theory of resolvent operators,the Banach contraction mapping principle,and fixed point theorems are used.While concluding,some examples are given to demonstrate the efficacy of the proposed results.
基金supported by the NSFC(12261044)the STP of Education Department of Jiangxi Province of China(GJJ210302)。
文摘We find the exact forms of meromorphic solutions of the nonlinear differential equations■,n≥3,k≥1,where q,Q are nonzero polynomials,Q■Const.,and p_(1),p_(2),α_(1),α_(2)are nonzero constants withα_(1)≠α_(2).Compared with previous results on the equation p(z)f^(3)+q(z)f"=-sinα(z)with polynomial coefficients,our results show that the coefficient of the term f^((k))perturbed by multiplying an exponential function will affect the structure of its solutions.
文摘In this paper, sane sufficient conditions are obtained for the oscillation for solutions of systems of high order partial differential equations of neutral type.
基金Supported by the Natural Science Foundation of China(10471086)Supported by the Science Research Foundation of Department of Education of Hunan Province(07C164)
文摘In this paper,by making use of the calculous technique and some results of the impulsive differential inequality,oscillatory properties of the solutions of certain nonlinear impulsive delay hyperbolic partial differential equations with nonlinear diffusion coefficient are investigated.Sufficient conditions for oscillations of such equations are obtained.
基金the Natural Science Foundation of Hunan Province(10471086)the Science Research Foundation of Administration of Education of Hunan Province(07C164)
文摘In this paper, some sufficient conditions are obtained for the oscillation of solutions for a class of second order nonlinear neutral partial differential equations with continuous distribution delay under Robin and Dirichlet's boundary value conditions.
文摘In this paper, some sufficient conditions are obtained for the oscillation for solutions of systems of high order partial differential equations of neutral type.
基金supported by the National Natural Science Foundation of China(Grant No.62373197)Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX18_0892).
文摘The COVID-19 outbreak has significantly disrupted the lives of individuals worldwide.Following the lifting of COVID-19 interventions,there is a heightened risk of future outbreaks from other circulating respiratory infections,such as influenza-like illness(ILI).Accurate prediction models for ILI cases are crucial in enabling governments to implement necessary measures and persuade individuals to adopt personal precautions against the disease.This paper aims to provide a forecasting model for ILI cases with actual cases.We propose a specific model utilizing the partial differential equation(PDE)that will be developed and validated using real-world data obtained from the Chinese National Influenza Center.Our model combines the effects of transboundary spread among regions in China mainland and human activities’impact on ILI transmission dynamics.The simulated results demonstrate that our model achieves excellent predictive performance.Additionally,relevant factors influencing the dissemination are further examined in our analysis.Furthermore,we investigate the effectiveness of travel restrictions on ILI cases.Results can be used to utilize to mitigate the spread of disease.
文摘This paper investigates the oscillatory and nonoscillatory behaviour of solu- tions of a class of third order nonlinear differential equations. Results extend and improve some known results in the literature.
文摘A class of second order nonlinear differential equations with delay depenging on the unknown function of the fromin the case where ∫0∞ ds/r(s) < ∞ is studied. Various classifications of their eventually positive solutions are given in terms of their asymptotic magnitudes, and necessary as well as sufficient conditions for the existence of these solutions are also obtained.
基金Project supported by the Natural Science Foundation of Guangdong Province
文摘In this paper, the second order nonlinear elliptic differential equations (E) (n)Sigma (i,j=1) partial derivative/partial derivativex(j)[a(i,j)(x,y) partial derivative/partial derivativex(j)y] + q(x)f(y) = e(x) are considered in an exterior Omega subset of R-n, where q(x) is allowed to change sign. Some sufficient conditions for any solutions y(x) of (E) to be satisfied liminf\\x\--> infinity \y(x)\ = 0 are obtained. Particularly, these results improve the previous results for second order ordinary differential equations.
文摘This paper deals with oscillatory /nonoscillatory behaviour of solutions of thirdorder nonlinear differential equations of the formwhere a,b,c E C([a,oo),R) such that a(t) does not change sign, b(t) 5 0, c(t) > 0,f∈C(R, R) such that (f(y)/y) ≥ β > 0 for y ≠ 0 and γ > 0 is a quotient of odd integers.It has been shown, under certain conditions on coefficient functions, that a solution of (1)and (2) which Las a zero is oscillatory and the nonoscillatory solutions of these equationstend to zero as t → ∞. The motivation for this work came from the observation that thewhere al b, c are constants such that b≤ 0, c > 0, has an oscillatory solution if and only ifand all nonoscillatory solutions of (3) tend to zero if and only if the equation has anoscillatory solution.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10661005)Fujian Province Science and Technology Plan Item (Grant No. 2008F5019)
文摘This paper proposes a lattice Boltzmann model with an amending function for one-dimensional nonlinear partial differential equations (NPDEs) in the form ut +αuux +βu^nuz +γuxx +δuzxx +ζxxxx = 0. This model is different from existing models because it lets the time step be equivalent to the square of the space step and derives higher accuracy and nonlinear terms in NPDEs. With the Chapman-Enskog expansion, the governing evolution equation is recovered correctly from the continuous Boltzmann equation. The numerical results agree well with the analytical solutions.
基金Supported by the National Nature Science Foundation of China(11071001)Supported by the Key Program of Ministry of Education of China(205068)
文摘In this paper, we consider the positive solutions of fractional three-point boundary value problem of the form Dο^α+u(t)+f(t,u(t),u'(t),…,u^(n-3)(5),u^(n-2)(t))=0,u^(i)(0)=0,0≤i≤n-2,u^(n-2)(1)-βu^(n-2)(ξ)=0,where 0〈t〈1,n-1〈α≤n,n≥2,ξ Е(0,1),βξ^a-n〈1. We first transform it into another equivalent boundary value problem. Then, we derive the Green's function for the equivalent boundary value problem and show that it satisfies certain properties. At last, by using some fixed-point theorems, we obtain the existence of positive solution for this problem. Example is given to illustrate the effectiveness of our result.
文摘By using the averaging technique, we obtain new oscillation criteria for second order delay differential equation with nonlinear neutral term. These results generalize and improve some known results about neutral delay differential equation of second order.
文摘In this paper, we use the concentration-compactness principle together with the Mountain Pass Lemma to get the existence of nontrivial solutions and the existence of infinitely many solutions of the problem need not be compact operators from E to R~1.
文摘In this paper the generalized nonlinear Euler differential equation t^2k(tu')u''+ t(f(u) + k(tu'))u' + g(u) = 0 is considered. Here the functions f(u), g(u) and k(u) satisfy smoothness conditions which guarantee the uniqueness of solutions of initial value problems, however, no conditions of sub(super) linearity are assumed. W'e present some necessary and sufficient conditions and some tests for the equivalent planar system to have or fail to have property (X^+), which is very important for the existence of periodic solutions and oscillation theory.
基金Project supported by the National Natural Science Foundation of China(Grant No.11072117)the Natural Science Foundationof Zhejiang Province,China(Grant Nos.Y6110007and Y6110502)the K.C.Wong Magna Fund in Ningbo University,China
文摘The present paper deals with the numerical solution of time-fractional partial differential equations using the element-free Galerkin (EFG) method, which is based on the moving least-square approximation. Compared with numerical methods based on meshes, the EFG method for time-fractional partial differential equations needs only scattered nodes instead of meshing the domain of the problem. It neither requires element connectivity nor suffers much degradation in accuracy when nodal arrangements are very irregular. In this method, the first-order time derivative is replaced by the Caputo fractional derivative of order α(0 〈 α≤ 1). The Galerkin weak form is used to obtain the discrete equations, and the essential boundary conditions are enforced by the penalty method. Several numerical examples are presented and the results we obtained are in good agreement with the exact solutions.
基金Supported by the NNSF of China(ll071001) Supported by the NSF" of the Anhui Higher Education Institutions of China(KJ2013B276) Supporied by the Key Program of the Natural Science Foundation for the Excellent Youth Scholars of Anhui Higher Education Institutions of China (2013SQRL142ZD)
文摘In this paper, we investigate the existence of solution for a class of impulse boundary value problem of nonlinear fractional functional differential equation of mixed type. We obtain the existence results of solution by applying some well-known fixed point theorems. An example is given to illustrate the effectiveness of our result.
基金Supported by the NSF of China(60174010)Supported by NSF of Hebei Province(102160)Supported by NS of Education Office in Heibei Province(2004123)
文摘This paper is concerned with the oscillation of nonlinear partial difference equations with continuous variables and the corresponding dual equations. Several sufficientconditions are obtained for the oscillation of these equations.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61672298,61873326,and 61802155)the Philosophy Social Science Research Key Project Fund of Jiangsu University(Grant No.2018SJZDI142)。
文摘Since December 2019,the COVID-19 epidemic has repeatedly hit countries around the world due to various factors such as trade,national policies and the natural environment.To closely monitor the emergence of new COVID-19 clusters and ensure high prediction accuracy,we develop a new prediction framework for studying the spread of epidemic on networks based on partial differential equations(PDEs),which captures epidemic diffusion along the edges of a network driven by population flow data.In this paper,we focus on the effect of the population movement on the spread of COVID-19 in several cities from different geographic regions in China for describing the transmission characteristics of COVID-19.Experiment results show that the PDE model obtains relatively good prediction results compared with several typical mathematical models.Furthermore,we study the effectiveness of intervention measures,such as traffic lockdowns and social distancing,which provides a new approach for quantifying the effectiveness of the government policies toward controlling COVID-19 via the adaptive parameters of the model.To our knowledge,this work is the first attempt to apply the PDE model on networks with Baidu Migration Data for COVID-19 prediction.