A novel multi-chip module(MCM) interconnect test generation scheme based on ant algorithm(AA) with mutation operator was presented.By combing the characteristics of MCM interconnect test generation,the pheromone updat...A novel multi-chip module(MCM) interconnect test generation scheme based on ant algorithm(AA) with mutation operator was presented.By combing the characteristics of MCM interconnect test generation,the pheromone updating rule and state transition rule of AA is designed.Using mutation operator,this scheme overcomes ordinary AA’s defects of slow convergence speed,easy to get stagnate,and low ability of full search.The international standard MCM benchmark circuit provided by the MCNC group was used to verify the approach.The results of simulation experiments,which compare to the results of standard ant algorithm,genetic algorithm(GA) and other deterministic interconnecting algorithms,show that the proposed scheme can achieve high fault coverage,compact test set and short CPU time,that it is a newer optimized method deserving research.展开更多
A novel interoperability test sequences optimization scheme is proposed in which the genetic algorithm (GA) is used to obtain the minimal-length interoperability test sequences. During our work, the basic interopera...A novel interoperability test sequences optimization scheme is proposed in which the genetic algorithm (GA) is used to obtain the minimal-length interoperability test sequences. During our work, the basic interoperability test sequences are generated based on the minimal-complete-coverage criterion, which removes the redundancy from conformance test sequences. Then interoperability sequences minimization problem can be considered as an instance of the set covering problem, and the GA is applied to remove redundancy in interoperability transitions. The results show that compared to conventional algorithm, the proposed algorithm is more practical to avoid the state space explosion problem, for it can reduce the length of the test sequences and maintain the same transition coverage.展开更多
A new approach to select anoptimal set of test points is proposed. The described method uses fault-wise table and multi-objective genetic algorithm to find the optimal set of test points. First, the fault-wise table i...A new approach to select anoptimal set of test points is proposed. The described method uses fault-wise table and multi-objective genetic algorithm to find the optimal set of test points. First, the fault-wise table is constructed whose entries are measurements associated with faults and test points. The selection of optimal test points is transformed to the selection of the columns that isolate the rows of the table. Then, four objectives are described according to practical test requirements. The multi-objective genetic algorithm is explained. Finally, the presented approach is illustrated by a practical example. The results indicate that the proposed method can efficiently and accurately find the optimal set of test points and is practical for large scale systems.展开更多
Based on the sequential probability ratio test(SPRT)developed by Wald,an improved method for successful probability test of missile flight is proposed.A recursive algorithm and its program in Matlab are designed to ca...Based on the sequential probability ratio test(SPRT)developed by Wald,an improved method for successful probability test of missile flight is proposed.A recursive algorithm and its program in Matlab are designed to calculate the real risk level of the sequential test decision and the average number of samples under various test conditions.A concept,that is "rejecting as soon as possible",is put forward and an alternate operation strategy is conducted.The simulation results show that it can reduce the test expenses.展开更多
文摘A novel multi-chip module(MCM) interconnect test generation scheme based on ant algorithm(AA) with mutation operator was presented.By combing the characteristics of MCM interconnect test generation,the pheromone updating rule and state transition rule of AA is designed.Using mutation operator,this scheme overcomes ordinary AA’s defects of slow convergence speed,easy to get stagnate,and low ability of full search.The international standard MCM benchmark circuit provided by the MCNC group was used to verify the approach.The results of simulation experiments,which compare to the results of standard ant algorithm,genetic algorithm(GA) and other deterministic interconnecting algorithms,show that the proposed scheme can achieve high fault coverage,compact test set and short CPU time,that it is a newer optimized method deserving research.
文摘A novel interoperability test sequences optimization scheme is proposed in which the genetic algorithm (GA) is used to obtain the minimal-length interoperability test sequences. During our work, the basic interoperability test sequences are generated based on the minimal-complete-coverage criterion, which removes the redundancy from conformance test sequences. Then interoperability sequences minimization problem can be considered as an instance of the set covering problem, and the GA is applied to remove redundancy in interoperability transitions. The results show that compared to conventional algorithm, the proposed algorithm is more practical to avoid the state space explosion problem, for it can reduce the length of the test sequences and maintain the same transition coverage.
基金supported by the Advanced Research Project of a National Department of China under Grant No.51317040102
文摘A new approach to select anoptimal set of test points is proposed. The described method uses fault-wise table and multi-objective genetic algorithm to find the optimal set of test points. First, the fault-wise table is constructed whose entries are measurements associated with faults and test points. The selection of optimal test points is transformed to the selection of the columns that isolate the rows of the table. Then, four objectives are described according to practical test requirements. The multi-objective genetic algorithm is explained. Finally, the presented approach is illustrated by a practical example. The results indicate that the proposed method can efficiently and accurately find the optimal set of test points and is practical for large scale systems.
文摘Based on the sequential probability ratio test(SPRT)developed by Wald,an improved method for successful probability test of missile flight is proposed.A recursive algorithm and its program in Matlab are designed to calculate the real risk level of the sequential test decision and the average number of samples under various test conditions.A concept,that is "rejecting as soon as possible",is put forward and an alternate operation strategy is conducted.The simulation results show that it can reduce the test expenses.