期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Classification of wood surface texture based on Gauss-MRF Model 被引量:4
1
作者 WANG Ke-qi BAI Xue-bing 《Journal of Forestry Research》 SCIE CAS CSCD 2006年第1期57-61,共5页
The basal theory of Gauss-MRF is expounded and 2-5 order Gauss MRF models are established. Parameters of the 2-5 order Gauss-MRF models for 300 wood samples' surface texture are also estimated by using LMS. The data ... The basal theory of Gauss-MRF is expounded and 2-5 order Gauss MRF models are established. Parameters of the 2-5 order Gauss-MRF models for 300 wood samples' surface texture are also estimated by using LMS. The data analysis shows that: 1) different rexture parameters have a clear scattered distribution, 2) the main direction of texture is the direction represented by the maximum parameter of Gauss-MRF parameters, and 3) for those samples having the same main direction, the finer the texture is, the greater the corresponding parameter is, and the smaller the other parameters are; and the higher the order of Gauss-MRF is, the more clearly the texture is described. On the condition of the second order Gauss MRF model, parameter B1, B2 of tangential texture are smaller than that of radial texture, while B3 and B4 of tangential texture are greater than that of radial texture. According to the value of separated criterion, the parameter of the fifth order Gauss-MRF is used as feature vector for Hamming neural network classification. As a result, the ratio of correctness reaches 88%. 展开更多
关键词 Wood surface texture Gauss-MRF Feature parameter Parameter estimation Separation judgment CLASSIFICATION
在线阅读 下载PDF
Laser Surface Textured PTFE Inhibitation for Stick-Slip Phenomenon Under Boundary Lubrication 被引量:1
2
作者 LEI Ming WANG Xiaolei HUANG Wei 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第S01期93-101,共9页
When the machine tool is in the start-and stop-stages,the stick-slip phenomenon will be observed and highprecision positioning,machining accuracy and fretting feed will not be guaranteed. The most critical reason is t... When the machine tool is in the start-and stop-stages,the stick-slip phenomenon will be observed and highprecision positioning,machining accuracy and fretting feed will not be guaranteed. The most critical reason is that there is the difference between the dynamic and the static friction coefficients. Textures with different area ratios are fabricated on the surfaces of the upper PTFE-based composite and the friction tests are carried out on a reciprocating tribotester under the boundary lubrication and flat-on-flat contact conditions. The results show that there exists an optimal textured area ratio of 19.6% that can minimize the difference between the dynamic and the static friction coefficients. 展开更多
关键词 machine tool laser surface texturing stick-slip phenomenon difference between the dynamic and static friction coefficients
在线阅读 下载PDF
Surface Texturing of TiO_2 Film by Mist Deposition of TiO_2 Nanoparticles 被引量:1
3
作者 Gang Qin Akira Watanabe 《Nano-Micro Letters》 SCIE EI CAS 2013年第2期129-134,共6页
Unique and various microstructures of titanium oxide(TiO_2 ) film including macroporous structure, chromatic veins and rings, have been easily fabricated by mist deposition method on silicon substrate with mild prepar... Unique and various microstructures of titanium oxide(TiO_2 ) film including macroporous structure, chromatic veins and rings, have been easily fabricated by mist deposition method on silicon substrate with mild preparation conditions. Rutile phase TiO_2 nanoparticles were directly used as starting material to prepare film and led to a simple preparation process. It was found that several different microstructures existed in the sample and changed with the varied positions from the center to the edge of the film when the concentration of the TiO_2 suspension is 0.06 mol/l, the deposition time is 30 min, the flow rate is 1 l/min and the temperature is150. The surface texturing shows apparent distinction as the concentration of the TiO_2 suspension decreased to 0.03 mol/l and 0.01 mol/l. 展开更多
关键词 Mist deposition TiO2 film TiO2 nanoparticle surface texturing Microstructure
在线阅读 下载PDF
A Hydrodynamic Model for Dimpled Mechanical Gas Seal Considering Interaction Effect 被引量:1
4
作者 时礼平 黄巍 王晓雷 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2015年第4期438-445,共8页
The mechanical gas seal of aero engine has to face the problems of high wear rate and short lifetime.Surface texture has shown beneficial effects over the tribological characteristics.Here,a hydrodynamic model for dim... The mechanical gas seal of aero engine has to face the problems of high wear rate and short lifetime.Surface texture has shown beneficial effects over the tribological characteristics.Here,a hydrodynamic model for dimpled annular area of mechanical gas seal considering the″interaction effect″between adjacent dimples is developed based on the Reynolds equation.Different multi-row columns are chosen and the dimensionless pressure in radial and circumferential directions is calculated.The results indicate that the″interaction effect″is more obvious in the circumferential direction than in the radial direction,even when the area and depth of the dimples are same.Moreover,for the 5×5column,the dimensionless average pressure considering the″interaction effect″increases by45.41% compared with the 1×5column.Further analysis demonstrates that the model with the 5×5column can be more reasonable with the consideration of reducing the calculation error caused by boundary conditions to investigate the hydrodynamic effect for dimpled mechanical gas seal. 展开更多
关键词 surface texture mechanical gas seal hydrodynamic effect interaction effect aero engine
在线阅读 下载PDF
Theoretical analysis of droplet transition from Cassie to Wenzel state 被引量:1
5
作者 刘天庆 李艳杰 +1 位作者 李香琴 孙玮 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第11期367-378,共12页
Whether droplets transit from the Cassie to the Wenzel state (C-W) on a textured surface is the touchstone that the superhydrophobicity of the surface is still maintained. However, the C-W transition mechanism, espe... Whether droplets transit from the Cassie to the Wenzel state (C-W) on a textured surface is the touchstone that the superhydrophobicity of the surface is still maintained. However, the C-W transition mechanism, especially the spontaneous transition of small droplets, is still not very clear to date. The interface free energy gradient of a small droplet is firstly proposed and derived as the driving force for its C-W evolution in this study based on the energy and gradient analysis. Then the physical and mathematical model of the C-W transition is found after the C-W driving force or transition pressure, the resistance, and the parameters of the meniscus beneath the droplet are formulated. The results show that the micro/nano structural parameters significantly affect the C-W driving force and resistance, The smaller the pillar diameter and pitch, the minor the C-W transition pressure, and the larger the resistance. Consequently, the C-W transition is difficult to be completed for the droplets on nano-textured surfaces. Meanwhile if the posts are too short, the front of the curved liquid-air interface below the droplet will touch the structural substrate easily even though the three phase contact line (TPCL) has not depinned. When the posts are high enough, the TPCL beneath the drop must move firstly before the meniscus can reach the substrate. As a result, the droplet on a textured surface with short pillars is easy to complete its C-W evolution. On the other hand, the smaller the droplet, the easier the C-W shift, since the transition pressure becomes larger, which well explains why an evaporating drop will collapse spontaneously from composite to Wenzel state. Besides, both intrinsic and advancing contact angles affect the C-W transition as well. The greater the two angles, the harder the C-W transition. In the end, the C-W transition parameters and the critical conditions measured in literatures are calculated and compared, and the calculations accord well with the experimental results. 展开更多
关键词 WETTING spontaneous transition textured surfaces interface free energy
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部