期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Electrochemical-Method-Induced Strong Metal-Support Interaction in Pt-CNT@SnO_(2) for CO-Tolerant Hydrogen Oxidation Reaction
1
作者 Shen-Zhou Li Zi-Jie Lin +2 位作者 Qi-An Chen Zhao Cai Qing Li 《电化学(中英文)》 北大核心 2024年第12期28-38,共11页
Inducing the classic strong metal-support interaction(SMSI)is an effective approach to enhance the performance of supported metal catalysts by encapsulating the metal nanoparticles(NPs)with supports.Conventional therm... Inducing the classic strong metal-support interaction(SMSI)is an effective approach to enhance the performance of supported metal catalysts by encapsulating the metal nanoparticles(NPs)with supports.Conventional thermal reduction method for inducing SMSI processes is often accompanied by undesirable structural evolution of metal NPs.In this study,a mild electrochemical method has been developed as a new approach to induce SMSI,using the cable structured core@shell CNT@SnO_(2) loaded Pt NPs as a proof of concept.The induced SnO_(x) encapsulation layer on the surface of Pt NPs can protect Pt NPs from the poisoned of CO impurity in hydrogen oxidation reaction(HOR),and the HOR current density could still maintain 85% for 2000 s with 10,000 ppm CO in H_(2),while the commercial Pt/C is completely inactivated.In addition,the electrons transfer from SnO_(x) to Pt NPs improved the HOR activity of the E-Pt-CNT@SnO_(2),achieving the excellent exchange current density of 1.55 A·mgPt^(-1).In situ Raman spectra and theoretical calculations show that the key to the electrochemical-method-induced SMSI is the formation of defects and the migration of SnO_(x) caused by the electrochemical redox operation,and the weakening the SneO bond strength by Pt NPs. 展开更多
关键词 Strong metal-support interaction Pt supported metal catalyst Hydrogen oxidation reaction CO tolerance
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部