期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
回归型模糊最小二乘支持向量机 被引量:11
1
作者 吴青 刘三阳 杜喆 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2007年第5期773-778,共6页
为了克服最小二乘支持向量机对于孤立点过分敏感的问题,将模糊隶属度概念引入最小二乘支持向量机中,提出了基于支持向量域描述的模糊最小二乘支持向量回归机.该方法先对样本进行数据域描述得到一个包含该组数据的最小半径的超球,再根据... 为了克服最小二乘支持向量机对于孤立点过分敏感的问题,将模糊隶属度概念引入最小二乘支持向量机中,提出了基于支持向量域描述的模糊最小二乘支持向量回归机.该方法先对样本进行数据域描述得到一个包含该组数据的最小半径的超球,再根据特征空间中样本与超球球心的距离确定它们的隶属度,减少了奇异点(噪声)的影响;把所要求解的约束凸二次优化问题转化为正定线性方程组,并采用快速Cholesky分解的方法求解该方程组.实验结果表明该方法在不牺牲训练速度的前提下,比支持向量机和最小二乘支持向量机具有更高的预测精度. 展开更多
关键词 最小二乘支持向量机 模糊隶属度 数据域描述
在线阅读 下载PDF
基于模糊支持向量机的数据域描述 被引量:6
2
作者 魏立力 龙卫江 张文修 《计算机科学》 CSCD 北大核心 2004年第1期108-109,共2页
受模糊支持向量机的启发,本文系统论述了带有模糊隶属度的数据域描述方法,称为模糊支持向量域描述。适用于数据集中的数据不完全肯定来自于假设总体的情形,不同的数据对数据集的域描述可以有不同的贡献。
关键词 模糊支持向量机 数据域 模糊隶属度 机器学习 经验风险 置信界
在线阅读 下载PDF
基于不平衡数据分类的一种平衡模糊支持向量机 被引量:6
3
作者 秦传东 刘三阳 张市芳 《计算机科学》 CSCD 北大核心 2012年第6期188-190,212,共4页
鉴于不平衡数据集中类不平衡比较大的分类问题,利用样本点的特性建立类不平衡调节因子和模糊隶属度,提出了平衡模糊支持向量机。首先计算样本协方差矩阵,求得类不平衡调节因子,然后计算各样本点的模糊隶属度,得到各样本对分类超平面的... 鉴于不平衡数据集中类不平衡比较大的分类问题,利用样本点的特性建立类不平衡调节因子和模糊隶属度,提出了平衡模糊支持向量机。首先计算样本协方差矩阵,求得类不平衡调节因子,然后计算各样本点的模糊隶属度,得到各样本对分类超平面的贡献率。类平衡调节因子和模糊隶属度同时对分类器的误差项产生影响。结果表明,这种平衡模糊支持向量机对类不平衡比较大的分类问题具有很好的分类效果。 展开更多
关键词 支持向量数据域描述 模糊隶属度 模糊支持向量机 平衡模糊支持向量机 不平衡因子
在线阅读 下载PDF
基于模糊核聚类的图像SVM分类辨识 被引量:6
4
作者 于文勇 康晓东 +1 位作者 葛文杰 王昊 《计算机科学》 CSCD 北大核心 2015年第3期307-310,320,共5页
提出一种结合特征场和模糊核聚类支持向量机的图像分类辨识方法。首先,构造符合人类视觉特性的图像彩色和纹理特征数据场,一方面,引入新阈值,建立图像纹理特征;另一方面,在图像彩色特征上,对能够引起注意的像素区域的像素点进行加权处理... 提出一种结合特征场和模糊核聚类支持向量机的图像分类辨识方法。首先,构造符合人类视觉特性的图像彩色和纹理特征数据场,一方面,引入新阈值,建立图像纹理特征;另一方面,在图像彩色特征上,对能够引起注意的像素区域的像素点进行加权处理,并使用彩色空间分布离散度来描述彩色的空间分布。其次,采用模糊核聚类支持向量机对图像进行分类研究。在使用特征空间时,不仅考虑了样本与类中心间的关系,还考虑了类中各个样本间的关系,以模糊连接度来度量类中各个样本间的关系,并以二叉树方式构造子分类器。实验结果表明,该方法可以获得较好的图像分类效果。 展开更多
关键词 支持向量机 隶属度函数 模糊核聚类 数据场
在线阅读 下载PDF
基于改进SVM的车辆传动系统故障诊断方法 被引量:11
5
作者 马立玲 郭凯杰 王军政 《北京理工大学学报》 EI CAS CSCD 北大核心 2020年第8期856-860,共5页
利用车辆传动系统试验数据对车辆进行故障诊断和性能评价可以实现车辆故障预警,提高可靠性,从而提高车辆性能,但测试数据有数据量大、不平衡、维度高、噪声多的特征,使得传统数据分析算法会产生次优的分类模型.针对上述问题,提出了一种... 利用车辆传动系统试验数据对车辆进行故障诊断和性能评价可以实现车辆故障预警,提高可靠性,从而提高车辆性能,但测试数据有数据量大、不平衡、维度高、噪声多的特征,使得传统数据分析算法会产生次优的分类模型.针对上述问题,提出了一种改进的不平衡数据分类支持向量机算法.该算法赋予各样本不同的权值,用马氏距离改进模糊隶属度的设计以排除变量相关性干扰,同时可以输出正常状态下的故障概率.实验结果表明,该算法能够有效提高故障诊断的准确性,概率输出模型可用于故障预警和性能分析. 展开更多
关键词 支持向量机 不平衡数据 概率输出 模糊隶属度 性能分析
在线阅读 下载PDF
基于核主分量分析和支持矢量数据描述的雷达目标模糊识别方法 被引量:7
6
作者 郭雷 肖怀铁 付强 《信号处理》 CSCD 北大核心 2009年第1期63-68,共6页
针对雷达目标高分辨距离像(HRRP)存在大量的信息冗余,易受到噪声的污染,可分性较差等问题,本文利用核方法解决非线性问题的优点,提出了基于核主分量分析(KPCA)的雷达目标HRRP特征提取与基于支持矢量数据描述(sVDD)的雷达多目标模糊识别... 针对雷达目标高分辨距离像(HRRP)存在大量的信息冗余,易受到噪声的污染,可分性较差等问题,本文利用核方法解决非线性问题的优点,提出了基于核主分量分析(KPCA)的雷达目标HRRP特征提取与基于支持矢量数据描述(sVDD)的雷达多目标模糊识别方法。在特征提取过程中,利用KPCA对雷达目标HRRP做降噪与降维处理,使得HRRP降低噪声和姿态角的敏感性;在识别过程中,首先在特征空间求得包含每一类目标训练样本的最小超球体,然后根据各个测试样本到最小超球体球面的距离构造属于各个类别的模糊隶属度,根据模糊隶属度的大小判断测试样本所属的类别。仿真实验结果表明,本文提出的算法应用于雷达多目标识别时,具有较高的正确识别率;同时基于SVDD多目标模糊识别算法训练过程只需对每一类目标进行训练,因此具有计算量小,稳健性能优等优点。所以本文提出的KPCA特征提取与SVDD雷达多目标模糊识别方法有很强的实用性。 展开更多
关键词 核主分量分析 特征提取 支持矢量数据描述 模糊隶属度 雷达目标识别
在线阅读 下载PDF
一种新的支持矢量数据描述模糊识别方法 被引量:2
7
作者 郭雷 肖怀铁 付强 《系统仿真学报》 CAS CSCD 北大核心 2009年第7期1882-1886,共5页
支持矢量机(SVM)是一种两类分类器,而支持矢量数据描述(SVDD)是一种单类数据分类方法,通过在特征空间寻找包含某类样本的最小超球体来对样本分类,该方法只需已知某类数据即可构造分类器。但是在SVDD方法中,直接根据超球体构造的分类器... 支持矢量机(SVM)是一种两类分类器,而支持矢量数据描述(SVDD)是一种单类数据分类方法,通过在特征空间寻找包含某类样本的最小超球体来对样本分类,该方法只需已知某类数据即可构造分类器。但是在SVDD方法中,直接根据超球体构造的分类器对样本数据正确识别能力不高。针对这个问题,根据样本在特征空间中到各个超球体球心的距离构造了样本属于各个类别的模糊隶属度函数,提出了FSVDD多目标识别方法。在FSVDD的训练过程中采用了乘性迭代规则的快速优化算法,该快速算法降低了优化的复杂度和缩短了优化时间。在针对不同类型数据集的识别实验中,证明了提出的FSVDD多目标识别算法具有训练速度快、识别率高的优点,有很强的实用性。 展开更多
关键词 目标识别 支持矢量机 支持矢量数据描述 特征空间 超球体 模糊隶属度
在线阅读 下载PDF
基于数据域描述的模糊临近支持向量机算法 被引量:3
8
作者 秦传东 刘三阳 《系统工程与电子技术》 EI CSCD 北大核心 2011年第2期449-452,463,共5页
针对传统支持向量机由于样本中存在孤立点或噪声而导致的过学习问题,通过分析模糊支持向量机和临近支持向量机的特点,借鉴它们的优点:模糊隶属度和临近超平面,提出了一种数据处理方法。该方法考虑了样本点到类中心的距离与样本对分类的... 针对传统支持向量机由于样本中存在孤立点或噪声而导致的过学习问题,通过分析模糊支持向量机和临近支持向量机的特点,借鉴它们的优点:模糊隶属度和临近超平面,提出了一种数据处理方法。该方法考虑了样本点到类中心的距离与样本对分类的贡献率的关系。这种改进使分类更为清晰和准确。结果表明:采用新的模糊隶属度模糊临近支持向量机算法有较高的识别率,但也耗费了较多的训练时间。 展开更多
关键词 支持向量数据域 临近支持向量机 模糊支持向量机 模糊隶属度
在线阅读 下载PDF
基于流形模糊双支持向量机的恒星光谱分类方法 被引量:4
9
作者 刘忠宝 高艳云 王建珍 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2015年第1期263-266,共4页
支持向量机(support vector machine,SVM)具有良好的学习性能和泛化能力,因而被广泛应用于恒星光谱分类中。然而实际应用面临的数据规模往往很大,SVM便暴露出计算量大、分类速度慢等问题。为了解决上述问题,Jayadeva等提出双支持向量机(... 支持向量机(support vector machine,SVM)具有良好的学习性能和泛化能力,因而被广泛应用于恒星光谱分类中。然而实际应用面临的数据规模往往很大,SVM便暴露出计算量大、分类速度慢等问题。为了解决上述问题,Jayadeva等提出双支持向量机(twin support vector machine,TWSVM),将计算时间减少至SVM的1/4。然后上述方法仅关注数据的全局特征,对每类数据的局部特征并未关注。鉴于此,提出基于流形模糊双支持向量机(manifold fuzzy twin support vector machine,MF-TSVM)的恒星光谱分类方法。利用流形判别分析获得数据的全局特征和局部特征,模糊隶属度函数的引入将各类数据区别对待,尽可能减少噪声点和奇异点对分类结果的影响。与C-SVM,KNN等传统分类方法在SDSS恒星光谱数据集上的比较实验表明了该方法的有效性。 展开更多
关键词 自动分类 恒星光谱 流形判别分析 模糊隶属度 双支持向量机
在线阅读 下载PDF
基于模糊机会约束SVDD的故障诊断方法 被引量:1
10
作者 秦亮 周绍磊 +1 位作者 史贤俊 张树团 《系统工程与电子技术》 EI CSCD 北大核心 2012年第12期2554-2558,共5页
针对使用不确定性数据进行多故障模式诊断问题,以模糊事件的可能性测度为基础,提出一种基于模糊机会约束支持向量数据描述的诊断方法。为有效地求解故障分类模型,提出模糊机会约束规划的对偶规划,根据贯序最小算法(sequential minimal o... 针对使用不确定性数据进行多故障模式诊断问题,以模糊事件的可能性测度为基础,提出一种基于模糊机会约束支持向量数据描述的诊断方法。为有效地求解故障分类模型,提出模糊机会约束规划的对偶规划,根据贯序最小算法(sequential minimal optimization,SMO)思想提出快速训练算法,利用支持向量数据描述使用一类数据求解分类面的优势,构建多类分类器。数值试验表明,本方法可以有效处理基于不确定数据的故障诊断问题,在故障类别较多的情况,速度有较大提高,具有一定实践意义。 展开更多
关键词 故障诊断 支持向量机 支持向量数据描述 模糊机会约束
在线阅读 下载PDF
面向大规模数据的模糊支持向量数据描述 被引量:2
11
作者 刘忠宝 赵文娟 《广西大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第6期1254-1260,共7页
针对支持向量数据描述面临的噪声数据敏感问题和大规模数据分类问题,提出面向大规模数据的模糊支持向量数据描述。该方法引入模糊理论和核心向量机,不仅在构造最小超球体时忽略对分类结果影响较小的数据,而且将支持向量数据描述的适用... 针对支持向量数据描述面临的噪声数据敏感问题和大规模数据分类问题,提出面向大规模数据的模糊支持向量数据描述。该方法引入模糊理论和核心向量机,不仅在构造最小超球体时忽略对分类结果影响较小的数据,而且将支持向量数据描述的适用范围从中小规模数据扩展到大规模数据。人工数据集和标准数据集上的实验表明新算法的有效性。 展开更多
关键词 支持向量数据描述 模糊理论 核心向量机 大规模数据
在线阅读 下载PDF
基于模糊加权近似支持向量机的Web文本分类 被引量:2
12
作者 王平 吴剑 《计算机应用与软件》 CSCD 2015年第5期54-58,共5页
Web文本分类是数据挖掘领域的研究热点。针对Web文本数据集高维和不平衡的特点,将模糊隶属度和平衡因子引入近似支持向量机,提出模糊加权近似支持向量机。首先计算样本的平均密度,并结合样本数量求得平衡因子,克服传统加权算法仅以样本... Web文本分类是数据挖掘领域的研究热点。针对Web文本数据集高维和不平衡的特点,将模糊隶属度和平衡因子引入近似支持向量机,提出模糊加权近似支持向量机。首先计算样本的平均密度,并结合样本数量求得平衡因子,克服传统加权算法仅以样本数为依据设置权值的缺陷,缓解数据不平衡造成的分类超平面偏移;再计算样本的模糊隶属度,消除噪声和奇异点造成的分类误差;近似支持向量机相比标准支持向量机具有明显的速度优势,更加适用于高维数据分类。实验表明,算法能有效提高不平衡数据的分类精度,在Web文本的训练速度和分类质量上有一定提高。 展开更多
关键词 文本分类 近似支持向量机 模糊隶属度 平衡因子 不平衡数据
在线阅读 下载PDF
广义最大间隔球形支持向量机 被引量:1
13
作者 文传军 柯佳 《计算机工程与应用》 CSCD 2012年第29期177-180,209,共5页
针对多类分类问题,提出一种超球支持向量机算法——广义最大间隔球形支持向量机,该算法利用两同心超球将正负类样本分隔开来,最大化两超球半径的差异,从而挖掘正负类样本的鉴别信息,同时对超球类支持向量机算法判决规则进行改进,引入模... 针对多类分类问题,提出一种超球支持向量机算法——广义最大间隔球形支持向量机,该算法利用两同心超球将正负类样本分隔开来,最大化两超球半径的差异,从而挖掘正负类样本的鉴别信息,同时对超球类支持向量机算法判决规则进行改进,引入模糊隶属度补充判决,弥补二类分类器投票决策的缺陷。理论分析了算法的相关性质,通过仿真实验验证了该算法的有效性。 展开更多
关键词 支持向量机 支持向量数据描述 最大间隔最小体积球型支持向量机 模糊隶属度
在线阅读 下载PDF
一种Vague集的模糊支持向量数据描述
14
作者 沈菊红 黄永东 孔妮娜 《计算机工程与应用》 CSCD 2012年第29期196-200,共5页
针对支持向量数据描述中噪声和孤立点带来的过拟合问题,提出了一种Vague集的支持向量数据描述(VFSVDD),利用模糊k-均值聚类方法生成每个训练样本的真、假隶属度,可以精细地控制训练样本对超球面边界的影响。用UCI机器学习数据集的数据... 针对支持向量数据描述中噪声和孤立点带来的过拟合问题,提出了一种Vague集的支持向量数据描述(VFSVDD),利用模糊k-均值聚类方法生成每个训练样本的真、假隶属度,可以精细地控制训练样本对超球面边界的影响。用UCI机器学习数据集的数据实验验证了VFSVDD的有效性。 展开更多
关键词 支持向量数据描述 VAGUE集 隶属度 模糊k-均值聚类
在线阅读 下载PDF
用于不平衡数据分类的模糊支持向量机算法 被引量:16
15
作者 鞠哲 曹隽喆 顾宏 《大连理工大学学报》 EI CAS CSCD 北大核心 2016年第5期525-531,共7页
作为一种有效的机器学习技术,支持向量机已经被成功地应用于各个领域.然而当数据不平衡时,支持向量机会产生次优的分类模型;另一方面,支持向量机算法对数据集中的噪声点和野点非常敏感.为了克服以上不足,提出了一种新的用于不平衡数据... 作为一种有效的机器学习技术,支持向量机已经被成功地应用于各个领域.然而当数据不平衡时,支持向量机会产生次优的分类模型;另一方面,支持向量机算法对数据集中的噪声点和野点非常敏感.为了克服以上不足,提出了一种新的用于不平衡数据分类的模糊支持向量机算法.该算法在设计样本的模糊隶属度函数时,不仅考虑训练样本到其类中心距离,而且考虑样本周围的紧密度.实验结果表明,所提模糊支持向量机算法可以有效地处理不平衡和噪声问题. 展开更多
关键词 支持向量机 模糊支持向量机 模糊隶属度 不平衡数据 分类
在线阅读 下载PDF
结合新型模糊支持向量机和证据理论的多传感器水质数据融合 被引量:9
16
作者 梁楠 邹志红 《电讯技术》 北大核心 2020年第3期331-337,共7页
在多传感器水质数据融合领域,证据理论是有效的数据融合方法之一,但基本概率分配一般不易确定,从而使数据融合能力难以有效发挥。支持向量机是统计学习理论之上的高级分类算法,具有普适性和全局优化等特点,但输出的基本概率分配有待进... 在多传感器水质数据融合领域,证据理论是有效的数据融合方法之一,但基本概率分配一般不易确定,从而使数据融合能力难以有效发挥。支持向量机是统计学习理论之上的高级分类算法,具有普适性和全局优化等特点,但输出的基本概率分配有待进一步提高。提出了一种基于证据理论和新型模糊支持向量机相结合的数据融合方法,通过建立基于分类超平面距离的模糊隶属度,训练模糊支持向量机提高传统支持向量机的基本概率分配,并结合证据理论进行海河水质数据融合。通过证据理论分别结合支持向量机和模糊综合评价法与上述方法进行对比实验,经精度、平均绝对百分误差、均方根误差等指标验证,精度提高10. 5%,表明所提方法是一种可靠的多传感器的水质融合方法,较其他方法具有更高的融合精度。 展开更多
关键词 多传感器水质数据融合 模糊支持向量机 证据理论 模糊隶属度 主成分分析
在线阅读 下载PDF
DP聚类的可信性加权模糊支持向量机 被引量:2
17
作者 盛晓遐 杨志民 王甜甜 《计算机工程与应用》 CSCD 北大核心 2019年第10期169-178,共10页
由于SVM(Support Vector Machine)在有离群点和不平衡数据的问题中分类性能相对较低,有研究者提出了一种面向不均衡分类的隶属度加权模糊支持向量机,只是文中的模糊隶属度并不能较好衡量样本点对确定最佳分划超平面所做的贡献大小。针... 由于SVM(Support Vector Machine)在有离群点和不平衡数据的问题中分类性能相对较低,有研究者提出了一种面向不均衡分类的隶属度加权模糊支持向量机,只是文中的模糊隶属度并不能较好衡量样本点对确定最佳分划超平面所做的贡献大小。针对以上问题提出了密度峰(Density Peaks,DP)聚类的可信性加权模糊支持向量机。首先由DP聚类找到离群点后剔除。再根据点到由DEC(Different Error Costs)确定的超平面的距离,得到初始隶属度,并用改进的FSVM-CIL(Fuzzy Support Vector Machines for Class Imbalance Learning)更新隶属度。之后剔除部分样本点,起到简约样本的作用,并减少数据不平衡带来的影响。通过实验验证了所提出算法的有效性。 展开更多
关键词 离群点 不平衡数据 密度峰(DP) 加权模糊支持向量机 模糊隶属度 可信性
在线阅读 下载PDF
基于多目标蚁群优化的单类支持向量机相似重复记录检测 被引量:12
18
作者 吕国俊 曹建军 +3 位作者 郑奇斌 常宸 翁年凤 彭琮 《兵工学报》 EI CAS CSCD 北大核心 2020年第2期324-331,共8页
为解决数据源中相似重复记录样本稀少问题,提出一种基于多目标蚁群优化的单类支持向量机相似重复记录分类检测方法。根据记录对中2条记录是否相似,将相似重复记录检测建模为二分类问题,用单类支持向量机进行分类,并且只用不相似重复记... 为解决数据源中相似重复记录样本稀少问题,提出一种基于多目标蚁群优化的单类支持向量机相似重复记录分类检测方法。根据记录对中2条记录是否相似,将相似重复记录检测建模为二分类问题,用单类支持向量机进行分类,并且只用不相似重复记录样本对进行训练;选择合适的属性相似度函数计算记录对之间的相似特征向量,将其作为单类支持向量机分类器的输入进行二分类检测;建立以查准率、查全率、特征数量综合最优为目标的多目标特征选择模型,结合训练样本为单类样本的特点,将启发式因子定义为类内散度最小化约束,设计了求解模型的多目标蚁群算法。通过将单类支持向量机算法和支持向量域描述算法、传统二分类支持向量机算法进行对比,结果验证了单类支持向量机算法的有效性和优越性。 展开更多
关键词 数据清洗 相似重复记录检测 多目标蚁群算法 特征选择 单类支持向量机 支持向量域描述
在线阅读 下载PDF
基于IFCM加权的SVDD硬件木马检测方法
19
作者 魏延海 李雄伟 +2 位作者 张阳 胡晓阳 张坤鹏 《计算机应用研究》 CSCD 北大核心 2019年第10期3054-3057,共4页
针对硬件木马(HT)种类繁多难以获取未知木马特征及采集的旁路信号含噪声问题,提出了一种基于IFCM加权的SVDD(IFCMW-SVDD)硬件木马检测方法。传统支持向量数据描述(SVDD)在解决单分类问题时存在相同条件下训练全部样本的不足,需要根据相... 针对硬件木马(HT)种类繁多难以获取未知木马特征及采集的旁路信号含噪声问题,提出了一种基于IFCM加权的SVDD(IFCMW-SVDD)硬件木马检测方法。传统支持向量数据描述(SVDD)在解决单分类问题时存在相同条件下训练全部样本的不足,需要根据相应问题对样本有主次之分进行训练。通过一种改进的模糊C均值方法(IFCM)计算金片旁路信号的隶属度,将其作为样本特征的权重(W)系数,使得针对硬件木马检测问题构建SVDD模型的支持向量能够描述金片信号的同时尽可能减小描述范围。实验表明,所提方法实现单分类硬件木马检测的同时较传统SVDD算法在检测精度和稳定性上都有所提高。 展开更多
关键词 硬件木马 旁路信号 改进模糊C-均值算法 支持向量数据描述 隶属度
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部