期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Response of underwater cylindrical shell subjected to supercavitating projectile trans-medium penetration:Experiment and simulation
1
作者 Yiming Ma Kui Tang +4 位作者 Lingquan Kong Hanxin Gong Minhui Gu Chao Cao Jinxiang Wang 《Defence Technology(防务技术)》 2025年第8期304-323,共20页
To investigate the dynamic response of the cylindrical shell targets to supercavitating projectile transmedium penetration and the penetration mechanism,experiments and numerical simulations were conducted.Simulations... To investigate the dynamic response of the cylindrical shell targets to supercavitating projectile transmedium penetration and the penetration mechanism,experiments and numerical simulations were conducted.Simulations examined the effects of entry water velocity and impact angle on penetration behavior.The results indicate that,upon water entry,the supercavitating projectile transfers its kinetic energy to the surrounding water medium,causing a sudden rise in local pressure.This creates an approximately hemispherical pressure field in the water medium ahead of the nose of the projectile,where the pressure distribution and magnitude are positively correlated with the velocity of the projectile.As the pressure field approaches the cylindrical shell,the area around the impact point experiences pre-stress and deformation due to the hydrodynamic pressure,which is known as the hydrodynamic ram effect.The deformation of the cylindrical shell caused by the hydrodynamic ram effect increases with increasing velocity of the projectile and exhibits a non-linear relationship with the impact angle,first decreasing and then increasing as the impact angle rises.Additionally,the hydrodynamic ram effect leads to greater local deformation and higher peak stresses in the cylindrical shell,which reduces the penetration drag force faced by the projectile in water compared to air,indicating a lower ballistic limit for underwater targets.During the penetration process,as the impact angle increases,the supercavitating projectile undergoes repetitive bending deformation and even brittle fracture,while the failure mode of the target is characterized by ductile hole expansion.Furthermore,the critical penetration velocity required to perforate the cylindrical shell target increases with increasing impact angle. 展开更多
关键词 supercavitating projectile Trans-medium penetration Hydrodynamic ram effect Failure mode
在线阅读 下载PDF
Global approximation based adaptive RBF neural network control for supercavitating vehicles 被引量:12
2
作者 LI Yang LIU Mingyong +1 位作者 ZHANG Xiaojian PENG Xingguang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第4期797-804,共8页
A global approximation based adaptive radial basis function(RBF) neural network control strategy is proposed for the trajectory tracking control of supercavitating vehicles(SV).A nominal model is built firstly wit... A global approximation based adaptive radial basis function(RBF) neural network control strategy is proposed for the trajectory tracking control of supercavitating vehicles(SV).A nominal model is built firstly with the unknown disturbance.Next, the control scheme is established consisting of a computed torque controller(CTC) for the practical vehicle and an RBF neural network controller to estimate model error between the practical vehicle and the nominal model. The network weights are adapted by employing a Lyapunov-based design. Then it is shown by the Lyapunov theory that the trajectory tracking errors asymptotically converge to a small neighborhood of zero. The control performance of the proposed controller is illustrated by simulation. 展开更多
关键词 radial basis function (RBF) neural network computedtorque controller (CTC) adaptive control supercavitating vehicle(SV)
在线阅读 下载PDF
Nonlinear dynamic response analysis of supercavitating vehicles 被引量:1
3
作者 麻震宇 林明东 +1 位作者 胡凡 张为华 《Journal of Central South University》 SCIE EI CAS 2012年第9期2502-2513,共12页
A finite element model for the supercavitating underwater vehicle was developed by employing 16-node shell elements of relative degrees of freedom.The nonlinear structural dynamic response was performed by introducing... A finite element model for the supercavitating underwater vehicle was developed by employing 16-node shell elements of relative degrees of freedom.The nonlinear structural dynamic response was performed by introducing the updated Lagrangian formulation.The numerical results indicate that there exists a critical thickness for the supercavitating plain shell for the considered velocity of the vehicle.The structure fails more easily because of instability with the thickness less than the critical value,while the structure maintains dynamic stability with the thickness greater than the critical value.As the velocity of the vehicle increases,the critical thickness for the plain shell increases accordingly.For the considered structural configuration,the critical thicknesses of plain shells are 5 and 7 mm for the velocities of 300 and 400 m/s,respectively.The structural stability is enhanced by using the stiffened configuration.With the shell configuration of nine ring stiffeners,the maximal displacement and von Mises stress of the supercavitating structure decrease by 25% and 17% for the velocity of 300 m/s,respectively.Compared with ring stiffeners,longitudinal stiffeners are more significant to improve structural dynamic performance and decrease the critical value of thickness of the shell for the supercavitating vehicle. 展开更多
关键词 supercavitating vehicle shell element of relative degrees of freedom nonlinear finite element dynamic response
在线阅读 下载PDF
Analysis on Velocity Characteristics of Cavitation Flow Around Hydrofoil 被引量:1
4
作者 李向宾 刘淑艳 +2 位作者 王国玉 张博 张敏弟 《Defence Technology(防务技术)》 SCIE EI CAS 2010年第3期206-211,共6页
The time-averaged velocity distributions in flows around a hydronautics hydrofoil were measured by using a digital particle image velocimeter(DPIV) system.The results show that the velocity distribution in the whole f... The time-averaged velocity distributions in flows around a hydronautics hydrofoil were measured by using a digital particle image velocimeter(DPIV) system.The results show that the velocity distribution in the whole flow field depends on the development of cavitation structures with the decreasing of cavitation number.The high-fluctuation region with lower velocity relates to the cavitation area.The lowest velocity distribution in the cavity core becomes more uniform,and its influence becomes smaller gradually as moving to downstream.The main-stream velocity distribution is even,then fluctuate and even at last.In the supercavitation stage,the fluid velocity in the cavitation region,corresponding to the front of the hydrofoil's suction surface,has a distribution close to the main stream,while the fluid velocity in other cavitation area is lower. 展开更多
关键词 engineering thermophysics hydronautics supercavitation hydrofoil DPIV velocity distribution
在线阅读 下载PDF
Cavity Flow Pattern Design for Supercaviting Torpedo
5
作者 裴譞 张宇文 +1 位作者 袁绪龙 邓飞 《Defence Technology(防务技术)》 SCIE EI CAS 2010年第4期262-268,共7页
The flow pattern design of supercaviting torpedo,like the shape design of conventional bedewed torpedo,occupies an important position in torpedo system design.In this paper,the flow pattern design issues were studied ... The flow pattern design of supercaviting torpedo,like the shape design of conventional bedewed torpedo,occupies an important position in torpedo system design.In this paper,the flow pattern design issues were studied systematically.A set of design criteria and main design requirements were proposed,and the design method and procedure were established.Moreover,the determination method of necessary parameters of cavitator and ventilated system for desired cavity flow pattern was given.Considered the speed and pressure disturbances in the torpedo navigation,a concept named margin design was proposed to solve the supercavitation deformation and instability caused by the disturbances. 展开更多
关键词 HYDRODYNAMICS supercaviting torpedo flow pattern design criterion design method design margin
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部