Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and hi...Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and high mechanical properties.Inspired by Chinese ramen,we propose a universal fabricating method(printing-P,training-T,cross-linking-C,PTC&PCT)for tough hydrogel scaffolds to fill this gap.First,3D printing fabricates a hydrogel scaffold with desired structures(P).Then,the scaffold could have extraordinarily high mechanical properties and functional surface structure by cycle mechanical training with salting-out assistance(T).Finally,the training results are fixed by photo-cross-linking processing(C).The tough gelatin hydrogel scaffolds exhibit excellent tensile strength of 6.66 MPa(622-fold untreated)and have excellent biocompatibility.Furthermore,this scaffold possesses functional surface structures from nanometer to micron to millimeter,which can efficiently induce directional cell growth.Interestingly,this strategy can produce bionic human tissue with mechanical properties of 10 kPa-10 MPa by changing the type of salt,and many hydrogels,such as gelatin and silk,could be improved with PTC or PCT strategies.Animal experiments show that this scaffold can effectively promote the new generation of muscle fibers,blood vessels,and nerves within 4 weeks,prompting the rapid regeneration of large-volume muscle loss injuries.展开更多
The evaluation of thermal resistance constitution for packaged A1GaN/GaN high electron mobility transistor (HEMT) by structure function method is proposed in this paper. The evaluation is based on the transient heat...The evaluation of thermal resistance constitution for packaged A1GaN/GaN high electron mobility transistor (HEMT) by structure function method is proposed in this paper. The evaluation is based on the transient heating measurement of the A1GaN/GaN HEMT by pulsed electrical temperature sensitive parameter method. The extracted chip-level and package-level thermal resistances of the packaged multi-finger A1GaN/GaN HEMT with 400μm SiC substrate are 22.5 K/W and 7.2 K/W respectively, which provides a non-invasive method to evaluate the chip-level thermal resistance of packaged A1GaN/GaN HEMTs. It is also experimentally proved that the extraction of the chip- level thermal resistance by this proposed method is not influenced by package form of the tested device and temperature boundary condition of measurement stage.展开更多
In the conceptual stage the function design process is realized by the computer aided application. After surveying on the function specification methods and the function modeling, a computer aided function design envi...In the conceptual stage the function design process is realized by the computer aided application. After surveying on the function specification methods and the function modeling, a computer aided function design environment is analyzed. Subsequently based on a module library and principle catalogue, a solution finding process as a part of conceptual design is proposed for a creative design. In addition, a search algorithm to find the solution of adaptable function structure is also discussed. The concepts proposed in this paper can support the subsequent design stages, especially simulation for checking the function structure defects.展开更多
The structure and magnetic properties of Osn (n=11~22) clusters are systematically studied by using density functional theory (DFT). For each size, the average binding energy per atom, the second-order difference...The structure and magnetic properties of Osn (n=11~22) clusters are systematically studied by using density functional theory (DFT). For each size, the average binding energy per atom, the second-order differences of total energies and the highest occupied molecular orbital (HOMO)–the lowest unoccupied molecular orbital (LUMO) gaps are calculated to analyze the stability of the cluster. The structures of Os14 and Os18 clusters are based on a close-packed hexagonal structure, and they have maximum stabilities, so n=14, 18 are the magic numbers. The 5d electrons play a dominant role in the chemical reaction of Osn clusters. The magnetic moments of Osn clusters are quenched around n=12, and when n=18~22 the value approximates to zero, due to the difference of electron transfer.展开更多
Two-dimensional function photonic crystals, in which the dielectric constants of medium columns are the functions of space coordinates , are proposed and studied numerically. The band gaps structures of the photonic c...Two-dimensional function photonic crystals, in which the dielectric constants of medium columns are the functions of space coordinates , are proposed and studied numerically. The band gaps structures of the photonic crystals for TE and TM waves are different from the two-dimensional conventional photonic crystals. Some absolute band gaps and semiDirac points are found. When the medium column radius and the function form of the dielectric constant are modulated, the numbers, width, and position of band gaps are changed, and the semi-Dirac point can either occur or disappear. Therefore,the special band gaps structures and semi-Dirac points can be achieved through the modulation on the two-dimensional function photonic crystals. The results will provide a new design method of optical devices based on the two-dimensional function photonic crystals.展开更多
Streamwise evolution of longitudinal and transverse velocity structure functions in a decaying homogeneous and nearly isotropic turbulence is reported for Reynolds numbers Reλ up to 720. First, two theoretical relati...Streamwise evolution of longitudinal and transverse velocity structure functions in a decaying homogeneous and nearly isotropic turbulence is reported for Reynolds numbers Reλ up to 720. First, two theoretical relations between longitudinal and transverse structure functions are examined in the light of recently derived relations and the results show that the low-order transverse structure functions can be well approximated by longitudinal ones within the sub-inertial range. Reconstruction of fourth-order transverse structure functions with a recently proposed relation by Grauer et al. is comparatively less valid than the relation already proposed by Antonia et al. Secondly, extended self-similarity methods are used to measure the scaling exponents up to order eight and the streamwise evolution of scaling exponents is explored. The scaling exponents of longitudinal structure functions are, at first location, close to Zybin's model, and at the fourth location, close to She–Leveque model. No obvious trend is found for the streamwise evolution of longitudinal scaling exponents, whereas, on the contrary, transverse scaling exponents become slightly smaller with the development of a steamwise direction. Finally, the stremwise variation of the order-dependent isotropy ratio indicates the turbulence at the last location is closer to isotropic than the other three locations.展开更多
In this paper, we study the computative structure of computable function - a structure of computative tree, and, by analysis on it, got the most general algorithm and model for computation on computable functions.
The longitudinal structure function with shadowing correction according to the nonlinear effects of the gluon density behavior at low x is considered. The solution of the GLR-MQ evolution equation for the gluon densit...The longitudinal structure function with shadowing correction according to the nonlinear effects of the gluon density behavior at low x is considered. The solution of the GLR-MQ evolution equation for the gluon density shows that the FL^g(x, Q2) behavior can be tamed by the singularity at low x values. Comparing our results with H1 data at R=4 GeV-1 shows that at very low x this behavior is completely tamed by taking shadowing correction into account.展开更多
As the most important type or component in the terrestrial ecosystems, forest ecosystem makes its role obviously prominent and important on environment and human being. It possesses non-substitutable functions in the ...As the most important type or component in the terrestrial ecosystems, forest ecosystem makes its role obviously prominent and important on environment and human being. It possesses non-substitutable functions in the process of sustainable development. However, due to the complexity of the forest ecosystem and the relatively delay or lack of the related research technology, the science is still in the case of immature and questions. This paper summarized and reviewed briefly the development and the present case of the forest ecology, then pointed out the existing problems in the forest ecosystem researches. In the end, we discussed several fields that need to pay more attention to in future researches.展开更多
The comparison between single-point energy scanning (SPES) and geometry optimization (OPT) in determining the equilibrium geometries of c^3∑g^+ and B^1-Пu states of dimer 7Li2 is made at numerous basis sets by ...The comparison between single-point energy scanning (SPES) and geometry optimization (OPT) in determining the equilibrium geometries of c^3∑g^+ and B^1-Пu states of dimer 7Li2 is made at numerous basis sets by using a symmetryadapted-cluster configuration-interaztion (SAC-CI) method in the Gaussian 03 program package. In this paper the difference of the equilibrium geometries obtained by SPES and by OPT is reported. The results obtained by SPES are found to be more reasonable than those obtained by OPT in full active space at the present SAC-CI level of theory. And the conclusion is attained that the cc-PVTZ is a most suitable basis set for these states. The calculated dissociation energies and equilibrium geometries are 0.8818 eV and 0.3090 nm for c^3∑g^+ state, and 0.3668 eV and 0.2932 nm for B^1-Пu state respectively. The potential energy curves are calculated over a wide internuclear distance range from about 2.5α0 to 37α0 and have a least-squares fit into the Murrell-Sorbie function. According to the calculated analytic potential energy functions, the harmonic frequencies (We) and other spectroscopic data (ωeXe, Be and αe) are calculated. Comparison of the theoretical determinations at present work with the experiments and other theories clearly shows that the present work is the most complete effort and thus represents an improvement over previous theoretical results.展开更多
To obtain thermal contact resistance(TCR) between the vertical double-diffused metal-oxide-semiconductor(VDMOS) and the heat sink, we derived the relationship between the total thermal resistance and the contact f...To obtain thermal contact resistance(TCR) between the vertical double-diffused metal-oxide-semiconductor(VDMOS) and the heat sink, we derived the relationship between the total thermal resistance and the contact force imposed on the VDMOS. The total thermal resistance from the chip to the heat sink is measured under different contact forces, and the TCR can be extracted nondestructively from the derived relationship. Finally, the experimental results are compared with the simulation results.展开更多
In this work, we study superintegrable quantum systems in two-dimensional Euclidean space and on a complex twosphere with second-order constants of motion. We show that these constants of motion satisfy the deformed o...In this work, we study superintegrable quantum systems in two-dimensional Euclidean space and on a complex twosphere with second-order constants of motion. We show that these constants of motion satisfy the deformed oscillator algebra. Then, we easily calculate the energy eigenvalues in an algebraic way by solving of a system of two equations satisfied by its structure function. The results are in agreement to the ones obtained from the solution of the relevant Schroedinger equation.展开更多
To alleviate the global warming by removing excess CO_(2) and converting them into value-added chemicals,(photo)electrochemical reduction has been recognized as a promising strategy.As the CO_(2) reduction reaction(CO...To alleviate the global warming by removing excess CO_(2) and converting them into value-added chemicals,(photo)electrochemical reduction has been recognized as a promising strategy.As the CO_(2) reduction reaction(CO_(2) RR) is involved with multiple electrons and multiple products,plus the complexity of the surface chemical environment of the catalyst,it is extremely challenging to establish the structure/function relationship.Atomically precise metal nanoclusters(NCs),with crystallographically resolved structure,molecule-like characters and strong quantum confinement effects,have been emerging as a new type of catalyst for CO_(2) RR,and more importantly,they can provide an ideal platform to unravel the comprehensive mechanistic insights and establish the structure/function relationship eventually.In this review,the recent advances regarding employing molecular metal NCs with well-defined structure including Au NCs,Au-based alloy NCs,Ag NCs,Cu NCs for CO_(2) RR and relevant mechanistic studies are discussed,and the opportunities and challenges are proposed at the end for paving the development of CO_(2) RR by using atomically precise metal NCs.展开更多
The splitting of potential energy levels for ground state X^2∏g of O^x2 (x = +1,-1) under spin-orbit coupling (SOC) has been calculated by using the spin-orbit (SO) multi-configuration quasi-degenerate perturb...The splitting of potential energy levels for ground state X^2∏g of O^x2 (x = +1,-1) under spin-orbit coupling (SOC) has been calculated by using the spin-orbit (SO) multi-configuration quasi-degenerate perturbation theory (SO-MCQDPT). Their Murrell-Sorbie (M S) potential functions are gained, and then the spectroscopic constants for electronic states 2^∏1/2 and 2^∏3/2 are derived from the M S function. The vertical excitation energies for O^x2 (x = +1,-1) are v[O2+1^(2∏3/2→X^2∏1/2)] =195.652cm^-1, and v[O2^-1(2^∏1/2 →X^2∏3/2)] =182.568cm^-1, respectively. All the spectroscopic data for electronic states 2^∏1/2 and 2^∏3/2 are given for the first time.展开更多
The work functions of the (110) and (10(3) surfaces of LaB6 are determined from ambient pressure to 39.1 GPa. The work function of the (110) surface slowly decreases but that of the (100) surface remains at a...The work functions of the (110) and (10(3) surfaces of LaB6 are determined from ambient pressure to 39.1 GPa. The work function of the (110) surface slowly decreases but that of the (100) surface remains at a relatively constant value. To determine the reason for this difference, the electron density distribution (EDD) is determined from high-pressure single-crystal x-ray diffraction data by the maximum entropy method. The EDD results show that the chemical bond properties in LaB6 play a key role also investigated by single-crystal x-ray diffraction. In observed from ambient pressure to 39.1 GPa. The structural stability of LaB6 under high pressure is this study, no structural or electronic phase transition is展开更多
The plane wave pseudo-potential method was used to investigate the structural, electronic, and elastic properties of Cd Se_(1-x)Te_x in the zinc blende phase. It is observed that the electronic properties are improv...The plane wave pseudo-potential method was used to investigate the structural, electronic, and elastic properties of Cd Se_(1-x)Te_x in the zinc blende phase. It is observed that the electronic properties are improved considerably by using LDA + U as compared to the LDA approach. The calculated lattice constants and bulk moduli are also comparable to the experimental results. The cohesive energies for pure Cd Se and Cd Te binary and their mixed alloys are calculated. The second-order elastic constants are also calculated by the Lagrangian theory of elasticity. The elastic properties show that the studied material has a ductile nature.展开更多
基金supported by the Innovative Research Group Project of the National Natural Science Foundation of China(T2121004)Key Programme(52235007)National Outstanding Youth Foundation of China(52325504).
文摘Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and high mechanical properties.Inspired by Chinese ramen,we propose a universal fabricating method(printing-P,training-T,cross-linking-C,PTC&PCT)for tough hydrogel scaffolds to fill this gap.First,3D printing fabricates a hydrogel scaffold with desired structures(P).Then,the scaffold could have extraordinarily high mechanical properties and functional surface structure by cycle mechanical training with salting-out assistance(T).Finally,the training results are fixed by photo-cross-linking processing(C).The tough gelatin hydrogel scaffolds exhibit excellent tensile strength of 6.66 MPa(622-fold untreated)and have excellent biocompatibility.Furthermore,this scaffold possesses functional surface structures from nanometer to micron to millimeter,which can efficiently induce directional cell growth.Interestingly,this strategy can produce bionic human tissue with mechanical properties of 10 kPa-10 MPa by changing the type of salt,and many hydrogels,such as gelatin and silk,could be improved with PTC or PCT strategies.Animal experiments show that this scaffold can effectively promote the new generation of muscle fibers,blood vessels,and nerves within 4 weeks,prompting the rapid regeneration of large-volume muscle loss injuries.
基金supported by the Natural Science Foundation of Beijing,China (Grant No. 4092005)the National High Technology Research and Development Program of China (Grant No. 2009AA032704)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20091103110006)
文摘The evaluation of thermal resistance constitution for packaged A1GaN/GaN high electron mobility transistor (HEMT) by structure function method is proposed in this paper. The evaluation is based on the transient heating measurement of the A1GaN/GaN HEMT by pulsed electrical temperature sensitive parameter method. The extracted chip-level and package-level thermal resistances of the packaged multi-finger A1GaN/GaN HEMT with 400μm SiC substrate are 22.5 K/W and 7.2 K/W respectively, which provides a non-invasive method to evaluate the chip-level thermal resistance of packaged A1GaN/GaN HEMTs. It is also experimentally proved that the extraction of the chip- level thermal resistance by this proposed method is not influenced by package form of the tested device and temperature boundary condition of measurement stage.
文摘In the conceptual stage the function design process is realized by the computer aided application. After surveying on the function specification methods and the function modeling, a computer aided function design environment is analyzed. Subsequently based on a module library and principle catalogue, a solution finding process as a part of conceptual design is proposed for a creative design. In addition, a search algorithm to find the solution of adaptable function structure is also discussed. The concepts proposed in this paper can support the subsequent design stages, especially simulation for checking the function structure defects.
基金Project supported by the National Natural Science Foundation of China(Grant No.51072072)
文摘The structure and magnetic properties of Osn (n=11~22) clusters are systematically studied by using density functional theory (DFT). For each size, the average binding energy per atom, the second-order differences of total energies and the highest occupied molecular orbital (HOMO)–the lowest unoccupied molecular orbital (LUMO) gaps are calculated to analyze the stability of the cluster. The structures of Os14 and Os18 clusters are based on a close-packed hexagonal structure, and they have maximum stabilities, so n=14, 18 are the magic numbers. The 5d electrons play a dominant role in the chemical reaction of Osn clusters. The magnetic moments of Osn clusters are quenched around n=12, and when n=18~22 the value approximates to zero, due to the difference of electron transfer.
基金Project supported by the National Natural Science Foundations of China(Grant No.61275047)the Research Project of Chinese Ministry of Education(Grant No.213009A)the Scientific and Technological Development Foundation of Jilin Province,China(Grant No.20130101031JC)
文摘Two-dimensional function photonic crystals, in which the dielectric constants of medium columns are the functions of space coordinates , are proposed and studied numerically. The band gaps structures of the photonic crystals for TE and TM waves are different from the two-dimensional conventional photonic crystals. Some absolute band gaps and semiDirac points are found. When the medium column radius and the function form of the dielectric constant are modulated, the numbers, width, and position of band gaps are changed, and the semi-Dirac point can either occur or disappear. Therefore,the special band gaps structures and semi-Dirac points can be achieved through the modulation on the two-dimensional function photonic crystals. The results will provide a new design method of optical devices based on the two-dimensional function photonic crystals.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11272196, 11002085, and 11032007) and the Key Project of Education Commission of Shanghai Municipal, China (Grant No. 11ZZ87).
文摘Streamwise evolution of longitudinal and transverse velocity structure functions in a decaying homogeneous and nearly isotropic turbulence is reported for Reynolds numbers Reλ up to 720. First, two theoretical relations between longitudinal and transverse structure functions are examined in the light of recently derived relations and the results show that the low-order transverse structure functions can be well approximated by longitudinal ones within the sub-inertial range. Reconstruction of fourth-order transverse structure functions with a recently proposed relation by Grauer et al. is comparatively less valid than the relation already proposed by Antonia et al. Secondly, extended self-similarity methods are used to measure the scaling exponents up to order eight and the streamwise evolution of scaling exponents is explored. The scaling exponents of longitudinal structure functions are, at first location, close to Zybin's model, and at the fourth location, close to She–Leveque model. No obvious trend is found for the streamwise evolution of longitudinal scaling exponents, whereas, on the contrary, transverse scaling exponents become slightly smaller with the development of a steamwise direction. Finally, the stremwise variation of the order-dependent isotropy ratio indicates the turbulence at the last location is closer to isotropic than the other three locations.
基金Project supported by National Natural Science Foundation of China.
文摘In this paper, we study the computative structure of computable function - a structure of computative tree, and, by analysis on it, got the most general algorithm and model for computation on computable functions.
文摘The longitudinal structure function with shadowing correction according to the nonlinear effects of the gluon density behavior at low x is considered. The solution of the GLR-MQ evolution equation for the gluon density shows that the FL^g(x, Q2) behavior can be tamed by the singularity at low x values. Comparing our results with H1 data at R=4 GeV-1 shows that at very low x this behavior is completely tamed by taking shadowing correction into account.
基金This study was supported by the National Natural Science Foundation of China (NSFC39970123 30170744)+1 种基金 Chinese Academy of Sciences (A grant KZCX2-406) and Changbai Mountain Open Research Station.
文摘As the most important type or component in the terrestrial ecosystems, forest ecosystem makes its role obviously prominent and important on environment and human being. It possesses non-substitutable functions in the process of sustainable development. However, due to the complexity of the forest ecosystem and the relatively delay or lack of the related research technology, the science is still in the case of immature and questions. This paper summarized and reviewed briefly the development and the present case of the forest ecology, then pointed out the existing problems in the forest ecosystem researches. In the end, we discussed several fields that need to pay more attention to in future researches.
基金Project supported by the National Natural Science Foundation of China (Grant No 10574039), the Henan Innovation for University Prominent Research Talents (Grant No 2006KYCX002) and the National Natural Science Foundation of Education Bureau of Henan Province, China (Grant No 2007140015). We heartily thank Professor Zhu Zheng-Hem of Sichuan University for his helpful discussion about the reasonable dissociation stages of these calculations limits during the planning
文摘The comparison between single-point energy scanning (SPES) and geometry optimization (OPT) in determining the equilibrium geometries of c^3∑g^+ and B^1-Пu states of dimer 7Li2 is made at numerous basis sets by using a symmetryadapted-cluster configuration-interaztion (SAC-CI) method in the Gaussian 03 program package. In this paper the difference of the equilibrium geometries obtained by SPES and by OPT is reported. The results obtained by SPES are found to be more reasonable than those obtained by OPT in full active space at the present SAC-CI level of theory. And the conclusion is attained that the cc-PVTZ is a most suitable basis set for these states. The calculated dissociation energies and equilibrium geometries are 0.8818 eV and 0.3090 nm for c^3∑g^+ state, and 0.3668 eV and 0.2932 nm for B^1-Пu state respectively. The potential energy curves are calculated over a wide internuclear distance range from about 2.5α0 to 37α0 and have a least-squares fit into the Murrell-Sorbie function. According to the calculated analytic potential energy functions, the harmonic frequencies (We) and other spectroscopic data (ωeXe, Be and αe) are calculated. Comparison of the theoretical determinations at present work with the experiments and other theories clearly shows that the present work is the most complete effort and thus represents an improvement over previous theoretical results.
基金Project supported by the National Natural Science Foundation of China(Grant No.61204081)
文摘To obtain thermal contact resistance(TCR) between the vertical double-diffused metal-oxide-semiconductor(VDMOS) and the heat sink, we derived the relationship between the total thermal resistance and the contact force imposed on the VDMOS. The total thermal resistance from the chip to the heat sink is measured under different contact forces, and the TCR can be extracted nondestructively from the derived relationship. Finally, the experimental results are compared with the simulation results.
文摘In this work, we study superintegrable quantum systems in two-dimensional Euclidean space and on a complex twosphere with second-order constants of motion. We show that these constants of motion satisfy the deformed oscillator algebra. Then, we easily calculate the energy eigenvalues in an algebraic way by solving of a system of two equations satisfied by its structure function. The results are in agreement to the ones obtained from the solution of the relevant Schroedinger equation.
基金the grant from the National Natural Science Foundation of China(No.21805170)financial support from Guangdong Natural Science Funds for Distinguished Young Scholars(No.2015A030306006)+1 种基金Guangzhou Science and Technology Plan Projects(No.201804010323)the fundamental funds for central universities(SCUT No.2018ZD022)。
文摘To alleviate the global warming by removing excess CO_(2) and converting them into value-added chemicals,(photo)electrochemical reduction has been recognized as a promising strategy.As the CO_(2) reduction reaction(CO_(2) RR) is involved with multiple electrons and multiple products,plus the complexity of the surface chemical environment of the catalyst,it is extremely challenging to establish the structure/function relationship.Atomically precise metal nanoclusters(NCs),with crystallographically resolved structure,molecule-like characters and strong quantum confinement effects,have been emerging as a new type of catalyst for CO_(2) RR,and more importantly,they can provide an ideal platform to unravel the comprehensive mechanistic insights and establish the structure/function relationship eventually.In this review,the recent advances regarding employing molecular metal NCs with well-defined structure including Au NCs,Au-based alloy NCs,Ag NCs,Cu NCs for CO_(2) RR and relevant mechanistic studies are discussed,and the opportunities and challenges are proposed at the end for paving the development of CO_(2) RR by using atomically precise metal NCs.
基金supported by the National Natural Science Foundation of China (Grant Nos 10574096 and 10676025)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No 20050610010)the Scientific Research Foundation of Young Teacher of Guizhou Normal University, China
文摘The splitting of potential energy levels for ground state X^2∏g of O^x2 (x = +1,-1) under spin-orbit coupling (SOC) has been calculated by using the spin-orbit (SO) multi-configuration quasi-degenerate perturbation theory (SO-MCQDPT). Their Murrell-Sorbie (M S) potential functions are gained, and then the spectroscopic constants for electronic states 2^∏1/2 and 2^∏3/2 are derived from the M S function. The vertical excitation energies for O^x2 (x = +1,-1) are v[O2+1^(2∏3/2→X^2∏1/2)] =195.652cm^-1, and v[O2^-1(2^∏1/2 →X^2∏3/2)] =182.568cm^-1, respectively. All the spectroscopic data for electronic states 2^∏1/2 and 2^∏3/2 are given for the first time.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11274030 and 11474281
文摘The work functions of the (110) and (10(3) surfaces of LaB6 are determined from ambient pressure to 39.1 GPa. The work function of the (110) surface slowly decreases but that of the (100) surface remains at a relatively constant value. To determine the reason for this difference, the electron density distribution (EDD) is determined from high-pressure single-crystal x-ray diffraction data by the maximum entropy method. The EDD results show that the chemical bond properties in LaB6 play a key role also investigated by single-crystal x-ray diffraction. In observed from ambient pressure to 39.1 GPa. The structural stability of LaB6 under high pressure is this study, no structural or electronic phase transition is
文摘The plane wave pseudo-potential method was used to investigate the structural, electronic, and elastic properties of Cd Se_(1-x)Te_x in the zinc blende phase. It is observed that the electronic properties are improved considerably by using LDA + U as compared to the LDA approach. The calculated lattice constants and bulk moduli are also comparable to the experimental results. The cohesive energies for pure Cd Se and Cd Te binary and their mixed alloys are calculated. The second-order elastic constants are also calculated by the Lagrangian theory of elasticity. The elastic properties show that the studied material has a ductile nature.