Different bilayer structures of HfO_(x)/Ti(TiO_(x)) are designed for hafnium-based memory to investigate the switching characteristics. The chemical states in the films and near the interface are characterized by x-ra...Different bilayer structures of HfO_(x)/Ti(TiO_(x)) are designed for hafnium-based memory to investigate the switching characteristics. The chemical states in the films and near the interface are characterized by x-ray photoelectron spectroscopy,and the oxygen vacancies are analyzed. Highly improved on/off ratio(~104) and much uniform switching parameters are observed for bilayer structures compared to single layer HfO_(x) sample, which can be attributed to the modulation of oxygen vacancies at the interface and better control of the growth of filaments. Furthermore, the reliability of the prepared samples is investigated. The carrier conduction behaviors of HfO_(x)-based samples can be attributed to the trapping and de-trapping process of oxygen vacancies and a filamentary model is proposed. In addition, the rupture of filaments during the reset process for the bilayer structures occur at the weak points near the interface by the recovery of oxygen vacancies accompanied by the variation of barrier height. The re-formation of fixed filaments due to the residual filaments as lightning rods results in the better switching performance of the bilayer structure.展开更多
Taking a microwave product as an example, a system of integrated assembly structure design is presented. Getting design constraints from the upstream design section through product data management(PDM), the system gen...Taking a microwave product as an example, a system of integrated assembly structure design is presented. Getting design constraints from the upstream design section through product data management(PDM), the system generates the assembly scheme using the case? based method, then assigns the design requirements into each component of the assembly. The detail design for each component can be performed under these design constraints. In order to practise concurrent design, the system sends the final design result to the upstream section and downstream section through PDM to achieve information sharing and integration.展开更多
Multifunctional photodetectors boost the development of traditional optical communication technology and emerging artificial intelligence fields, such as robotics and autonomous driving. However, the current implement...Multifunctional photodetectors boost the development of traditional optical communication technology and emerging artificial intelligence fields, such as robotics and autonomous driving. However, the current implementation of multifunctional detectors is based on the physical combination of optical lenses, gratings, and multiple photodetectors, the large size and its complex structure hinder the miniaturization, lightweight, and integration of devices. In contrast, perovskite materials have achieved remarkable progress in the field of multifunctional photodetectors due to their diverse crystal structures, simple morphology manipulation, and excellent optoelectronic properties. In this review, we first overview the crystal structures and morphology manipulation techniques of perovskite materials and then summarize the working mechanism and performance parameters of multifunctional photodetectors. Furthermore, the fabrication strategies of multifunctional perovskite photodetectors and their advancements are highlighted, including polarized light detection, spectral detection, angle-sensing detection, and selfpowered detection. Finally, the existing problems of multifunctional detectors and the perspectives of their future development are presented.展开更多
Aqueous zinc ion batteries(AZIBs) demonstrate tremendous competitiveness and application prospects because of their abundant resources,low cost, high safety, and environmental friendliness. Although the advanced elect...Aqueous zinc ion batteries(AZIBs) demonstrate tremendous competitiveness and application prospects because of their abundant resources,low cost, high safety, and environmental friendliness. Although the advanced electrochemical energy storage systems based on zinc ion batteries have been greatly developed, many severe problems associated with Zn anode impede its practical application, such as the dendrite formation,hydrogen evolution, corrosion and passivation phenomenon. To address these drawbacks, electrolytes, separators, zinc alloys, interfacial modification and structural design of Zn anode have been employed at present by scientists. Among them, the structural design for zinc anode is relatively mature, which is generally believed to enhance the electroactive surface area of zinc anode, reduce local current density, and promote the uniform distribution of zinc ions on the surface of anode. In order to explore new research directions, it is crucial to systematically summarize the structural design of anode materials. Herein, this review focuses on the challenges in Zn anode, modification strategies and the three-dimensional(3D) structure design of substrate materials for Zn anode including carbon substrate materials, metal substrate materials and other substrate materials. Finally, future directions and perspectives about the Zn anode are presented for developing high-performance AZIBs.展开更多
Rational architecture design has turned out to be an effective strategy in improving the electrochemical performance of electrode materials for batteries.However,an elaborate structure that could simultaneously endow ...Rational architecture design has turned out to be an effective strategy in improving the electrochemical performance of electrode materials for batteries.However,an elaborate structure that could simultaneously endow active materials with promoted reaction reversibility,accelerated kinetic and restricted volume change still remains a huge challenge.Herein,a novel chemical interaction motivated structure design strategy has been proposed,and a chemically bonded Co(CO_(3))_(0.5)OH·0.11 H_(2)O@MXene(CoCH@MXene)layered-composite was fabricated for the first time.In such a composite,the chemical interaction between Co^(2+)and MXene drives the growth of smaller-sized CoCH crystals and the subsequent formation of interwoven CoCH wires sandwiched in-between MXene nanosheets.This unique layered structure not only encourages charge transfer for faster reaction dynamics,but buffers the volume change of CoCH during lithiation-delithiation process,owing to the confined crystal growth between conductive MXene layers with the help of chemical bonding.Besides,the sandwiched interwoven CoCH wires also prevent the stacking of MXene layers,further conducive to the electrochemical performance of the composite.As a result,the as-prepared CoCH@MXene anode demonstrates a high reversible capacity(903.1 mAh g^(-1)at 100 mA g^(-1))and excellent cycling stability(maintains 733.6 mAh g^(-1)at1000 mA g^(-1)after 500 cycles)for lithium ion batteries.This work highlights a novel concept of layerby-layer chemical interaction motivated architecture design for futuristic high performance electrode materials in energy storage systems.展开更多
The vacuum vessel of the HT-7U superconducting tokamak will be a fully-welded structure with a double-wall. The space between the double-wall will be filled with borated water for neutron shielding. Non-circular cross...The vacuum vessel of the HT-7U superconducting tokamak will be a fully-welded structure with a double-wall. The space between the double-wall will be filled with borated water for neutron shielding. Non-circular cross-section is designed for plasma elongating. Horizontal and vertical ports are designed for diagnosing, vacuum pumping, plasma heating and plasma current driving, etc. The vacuum vessel consists of 16 segments. It will be baked out at 250℃ to obtain a clean wall. When the machine is in operation, both the hot wall (the wall temperature is around 100℃) and the cold wall (wall temperature is in normal equilibrium) are considered. The stress caused by thermal deformation and the electromagnetic (EM) loads caused by 1.5 MA plasma disruption in 3.5 T magnetic field have to be taken into account in the design of the HT-7U vacuum vessel Finite element method was employed for structure analysis of the vacuum vessel.展开更多
In order to develop a high-voltage power supply (HVPS) with high quality parame- ters, not only its electrical circuit but also its structure should be studied in detail. In this paper, the structure design of the c...In order to develop a high-voltage power supply (HVPS) with high quality parame- ters, not only its electrical circuit but also its structure should be studied in detail. In this paper, the structure design of the collector power supply for gyrotron is discussed first. Then the electri- cal field and potential simulations of its inain devices are analyzed. Finally, relevant calculations and conclusions are given.展开更多
When shaped charge penetrats into concrete,crater diameter must meet certain requirements.By using theories of shaped jet formation and crater diameter growth during jet penetrating concrete,we revealed the thresholds...When shaped charge penetrats into concrete,crater diameter must meet certain requirements.By using theories of shaped jet formation and crater diameter growth during jet penetrating concrete,we revealed the thresholds of the velocity and diameter of jet head,and therefore obtained the related structure parameters of top liner,so that shaped charge structure was developed.We built a?60mm copper liner and a?142mm Ti-alloy liner which followed the rules of 0.6cal and 0.7cal in-crater diameter.respectively.X-ray experiment and penetration test results showed that the parameters of jet head were consistent with the results of theoretical analysis.The in-crater diameter of?60mm shaped charge reached 36 mm,and the?142mm one reached 100 mm.They both met the design requirements.展开更多
Lithium-sulfur battery(LSB)has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems.The widely comme...Lithium-sulfur battery(LSB)has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems.The widely commercial application and development of LSB is mainly hindered by serious“shuttle effect”of lithium polysulfides(Li PSs),slow reaction kinetics,notorious lithium dendrites,etc.In various structures of LSB materials,array structured materials,possessing the composition of ordered micro units with the same or similar characteristics of each unit,present excellent application potential for various secondary cells due to some merits such as immobilization of active substances,high specific surface area,appropriate pore sizes,easy modification of functional material surface,accommodated huge volume change,enough facilitated transportation for electrons/lithium ions,and special functional groups strongly adsorbing Li PSs.Thus many novel array structured materials are applied to battery for tackling thorny problems mentioned above.In this review,recent progresses and developments on array structured materials applied in LSBs including preparation ways,collaborative structural designs based on array structures,and action mechanism analyses in improving electrochemical performance and safety are summarized.Meanwhile,we also have detailed discussion for array structured materials in LSBs and constructed the structure-function relationships between array structured materials and battery performances.Lastly,some directions and prospects about preparation ways,functional modifications,and practical applications of array structured materials in LSBs are generalized.We hope the review can attract more researchers'attention and bring more studying on array structured materials for other secondary batteries including LSB.展开更多
Biomass conversion offers an efficient approach to alleviate the energy and environmental issues.Electrochemical oxidation of 5-hydroxymethylfurfural(HMF)has attracted tremendous attention in the latest few years for ...Biomass conversion offers an efficient approach to alleviate the energy and environmental issues.Electrochemical oxidation of 5-hydroxymethylfurfural(HMF)has attracted tremendous attention in the latest few years for the mild synthesis conditions and high conversion efficiency to obtain 2,5-furan dicarboxylic acid(FDCA),but there still remain problems such as limited yield,short cycle life,and ambiguous reaction mechanism.Despite many reviews highlighting a variety of electrocatalysts for electrochemical oxidation of HMF,a detailed discussion of the structural modulation of catalyst and the underlying catalytic mechanism is still lacking.We herein provide a comprehensive summary of the recent development of electrochemical oxidation of HMF to FDCA,particularly focusing on the mechanism studies as well as the advanced strategies developed to regulate the structure and optimize the performance of the electrocatalysts,including heterointerface construction,defect engineering,single-atom engineering,and in situ reconstruction.Experimental characterization techniques and theoretical calculation methods for mechanism and active site studies are elaborated,and challenges and future directions of electrochemical oxidation of HMF are also prospected.This review will provide guidance for designing advanced catalysts and deepening the understanding of the reaction mechanism beneath electrochemical oxidation of HMF to FDCA.展开更多
The microstructure design for thermal conduction pathways in polymeric electrical encapsulation materials is essential to meet the stringent requirements for efficient thermal management and thermal runaway safety in ...The microstructure design for thermal conduction pathways in polymeric electrical encapsulation materials is essential to meet the stringent requirements for efficient thermal management and thermal runaway safety in modern electronic devices.Hence,a composite with three-dimensional network(Ho/U-BNNS/WPU)is developed by simultaneously incorporating magnetically modified boron nitride nanosheets(M@BNNS)and non-magnetic organo-grafted BNNS(U-BNNS)into waterborne polyurethane(WPU)to synchronous molding under a horizontal magnetic field.The results indicate that the continuous in-plane pathways formed by M@BNNS aligned along the magnetic field direction,combined with the bridging structure established by U-BNNS,enable Ho/U-BNNS/WPU to exhibit exceptional in-plane(λ//)and through-plane thermal conductivities(λ_(⊥)).In particular,with the addition of 30 wt%M@BNNS and 5 wt%U-BNNS,theλ//andλ_(⊥)of composites reach 11.47 and 2.88 W m^(-1) K^(-1),respectively,which representing a 194.2%improvement inλ_(⊥)compared to the composites with a single orientation of M@BNNS.Meanwhile,Ho/U-BNNS/WPU exhibits distinguished thermal management capabilities as thermal interface materials for LED and chips.The composites also demonstrate excellent flame retardancy,with a peak heat release and total heat release reduced by 58.9%and 36.9%,respectively,compared to WPU.Thus,this work offers new insights into the thermally conductive structural design and efficient flame-retardant systems of polymer composites,presenting broad application potential in electronic packaging fields.展开更多
Non-renewable fossil fuels have led to serious problems such as global warming,environmental pollution,etc.Oxygen electrocatalysis including oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)plays a cent...Non-renewable fossil fuels have led to serious problems such as global warming,environmental pollution,etc.Oxygen electrocatalysis including oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)plays a central role in clean energy conversion,enabling a number of sustainable processes for future air battery technologies.Fluorine,as the most electronegative element(4.0)not only can induce more efficient regulation for the electronic structure,but also can bring more abundant defects and other novel effects in materials selection and preparation for favorable catalysis with respect to the other nonmetal elements.However,an individual and comprehensive overview of fluorine-containing functional materials for oxygen electrocatalysis field is still blank.Therefore,it is very meaningful to review the recent progresses of fluorine-containing oxygen electrocatalysts.In this review,we first systematically summarize the controllable preparation methods and their possible development directions based on fluorine-containing materials from four preparation methods.Due to the strong electron-withdrawing properties of fluorine,its control of the electronic structure can effectively enhance the oxygen electrocatalytic activity of the materials.In addition,the catalytic enhancement effect of fluorine on carbonbased materials also includes the prevent oxidation and the layer peeling,and realizes the precise atomic control.And the catalytic improvement mechanism of fluorine containing metal-based compounds also includes the hydration of metal site,the crystal transformation,and the oxygen vacancy induction.Then,based on their various dimensions(0D–3D),we also have summarized the advantages of different morphologies on oxygen electrocatalytic performances.Finally,the prospects and possible future researching direction of F-containing oxygen electrocatalysts are presented(e.g.,novel pathways,advanced methods for measurement and simulation,field assistance and multi-functions).The review is considered valuable and helpful in exploring the novel designs and mechanism analyses of advanced fluorine-containing electrocatalysts.展开更多
In this paper,the design,manufacture and testing of an origami protective shield with a supporting frame structure are presented.It consists of an origami shield surface and a deployable supporting frame structure tha...In this paper,the design,manufacture and testing of an origami protective shield with a supporting frame structure are presented.It consists of an origami shield surface and a deployable supporting frame structure that needs to be portable and sufficiently stiff.First,for the design of the shield surface,a threestage origami crease pattern is developed to reduce the shield size in the folded state.The shield surface consists of several stiff modular panels and layered with flexible fabric.The modular panels are made of a multi-layer composite where a ceramic layer is made of small pieces to improve durability as those small pieces enable restriction of crack propagation.Then,the supporting frame structure is designed as a chain-of-bars structure in order to fold into a highly compact state as a bundle of bars and deploy in sequence.Thus,a feature-driven topology structural optimization method preserving component sequence is developed where the inter-dependence of sub-structures is taken into account.A bar with semi-circular ends is used as a basic design feature.The positions of the bar’s end points are treated as design variables and the width of the bars is kept constant.Then,a constraint on the total length of the chain of bars is introduced.Finally,the modular panels made of multi-layer composite and the full-scale prototype of the origami shield are fabricated and tested to verify the bullet-proof performance.展开更多
Wavelength selective switch(WSS)is the crucial component in the reconfigurable optical add/drop multiplexer(ROADM),which plays a pivotal role in the next-generation all-optical networks.We present a compact architectu...Wavelength selective switch(WSS)is the crucial component in the reconfigurable optical add/drop multiplexer(ROADM),which plays a pivotal role in the next-generation all-optical networks.We present a compact architecture of twin 1×40 liquid crystal on silicon(LCoS)-based WSS,which can be regarded as a 4f system in the wavelength direction and a 2f system in the switching direction.It is designed with theoretical analysis and simulation investigation.Polarization multiplexing is employed for two sources of twin WSS by polarization con-version before the common optical path.The WSS system attains a coupling efficacy exceeding 96%for 90%of the ports through simulation optimization.The 3 dB bandwidth can be achieved by more than 44 GHz at a 50 GHz grid for all 120 channels at all deflection ports.This work establishes a solid foundation for developing high-performance WSS with larger port counts.展开更多
The concepts of floating structure plays a very important role in deepwater projects; and the design of the floating structure is one of the most important tasks in the project. The importance of the floating structur...The concepts of floating structure plays a very important role in deepwater projects; and the design of the floating structure is one of the most important tasks in the project. The importance of the floating structure in offshore projects can be demonstrated in the following several areas: the substantial dynamic structure responses due to wave loading and current loading; the limited motion requirements of risers in deep water; and the increasing difficulty of installation for different components of the system. Three major technical aspects have to be considered, i.e. the strength of structure, the fatigue resistance capacity of the system, and local and global stability of the structure. This paper reviews the current design practice of floating structures, evaluates the main tasks during the design and associated major technical requirements, and addresses the major technical challenges encountered during the design. As a close-out of the paper, the authors discuss some potential future developments in the design of floating structures.展开更多
Li-rich layered oxide(LRLO)cathodes have been regarded as promising candidates for next-generation Li-ion batteries due to their exceptionally high energy density,which combines cationic and anionic redox activities.H...Li-rich layered oxide(LRLO)cathodes have been regarded as promising candidates for next-generation Li-ion batteries due to their exceptionally high energy density,which combines cationic and anionic redox activities.However,continuous voltage decay during cycling remains the primary obstacle for practical applications,which has yet to be fundamentally addressed.It is widely acknowledged that voltage decay originates from the irreversible migration of transition metal ions,which usually further exacerbates structural evolution and aggravates the irreversible oxygen redox reactions.Recently,constructing O2-type structure has been considered one of the most promising approaches for inhibiting voltage decay.In this review,the relationship between voltage decay and structural evolution is systematically elucidated.Strategies to suppress voltage decay are systematically summarized.Additionally,the design of O2-type structure and the corresponding mechanism of suppressing voltage decay are comprehensively discussed.Unfortunately,the reported O2-type LRLO cathodes still exhibit partially disordered structure with extended cycles.Herein,the factors that may cause the irreversible transition metal migrations in O2-type LRLO materials are also explored,while the perspectives and challenges for designing high-performance O2-type LRLO cathodes without voltage decay are proposed.展开更多
In-vessel components are important parts of the EAST superconducting tokamak. They include the plasma facing components, passive plates, cryo-pumps, in-vessel coils, etc. The structural design, analysis and related R...In-vessel components are important parts of the EAST superconducting tokamak. They include the plasma facing components, passive plates, cryo-pumps, in-vessel coils, etc. The structural design, analysis and related R&D have been completed. The divertor is designed in an up-down symmetric configuration to accommodate both double null and single null plasma operation. Passive plates are used for plasma movement control. In-vessel coils are used for the active control of plasma vertical movements. Each cryo-pump can provide an approximately 45 m^3/s pumping rate at a pressure of 10^-1 Pa for particle exhaust. Analysis shows that, when a plasma current of 1 MA disrupts in 3 ms, the EM loads caused by the eddy current and the halo current in a vertical displacement event (VDE) will not generate an unacceptable stress on the divertor structure. The bolted divertor thermal structure with an active cooling system can sustain a load of 2 MW/m^2 up to a 60 s operation if the plasma facing surface temperature is limited to 1500 ℃. Thermal testing and structural optimization testing were conducted to demonstrate the analysis results.展开更多
Among the many strategies to fabricate the silicon/carbon composite,yolk/double-shells structure can be regarded as an effective strategy to overcome the intrinsic defects of Si-based anode materials for Li-ion batter...Among the many strategies to fabricate the silicon/carbon composite,yolk/double-shells structure can be regarded as an effective strategy to overcome the intrinsic defects of Si-based anode materials for Li-ion batteries(LIBs).Hereon,a facile and inexpensive technology to prepare silicon/carbon composite with yolk/double-shells structure is proposed,in which the double buffering carbon shells are fabricated.The silicon/carbon nanoparticles with core-shell structure are encapsulated by SiO_(2)and external carbon layer,and it shows the yolk/double-shells structure via etching the SiO_(2)sacrificial layer.The multiply shells structure not only significantly improves the electrical conductivity of composite,but also effectively prevents the exposure of Si particles from the electrolyte composition.Meanwhile,the yolk/double-shells structure can provide enough space to accommodate the volume change of the electrode during charge/discharge process and avoid the pulverization of Si particles.Moreover,the as-prepared YDS-Si/C shows excellent performance as anode of LIBs,the reversible capacity is as high as 1066 mA h g^(-1) at the current density of 0.5 A g^(-1) after 200 cycles.At the same time,the YDS-Si/C has high capacity retention and good cyclic stability.Therefore,the unique architecture design of yolk/double-shells for Si/C composite provides an instructive exploration for the development of next generation anode materials of LIBs with high electrochemical performances and structural stability.展开更多
The modern transportation system is increasingly developed during recent years.It is an effective solution to set the noise barriers to reduce the traffic noise pollution caused by different kinds of transportation sy...The modern transportation system is increasingly developed during recent years.It is an effective solution to set the noise barriers to reduce the traffic noise pollution caused by different kinds of transportation systems.Many deficiencies on concrete noise barriers and metal noise barriers with rivet structure can be eliminated by a new kind of noise barrier with no-riveted structure.The mechanical performance examination and acoustic performance test are conducted on the new-designed noise barrier with no-riveted structure.The results indicate that the maximum stress is 1.74 MPa and the maximum deformation is 1.04 mm with load acting on the unit plate.The noise reduction coefficient of this kind of no-riveted noise barrier unit plate is 0.75 and its noise insulation is 40 dB,which were conform to or superior to the standard requirements.Therefore,this new designed noise barrier meets the field application requirements of mechanical and acoustic performance,which demonstrates the noise barriers can be widely promoted.展开更多
The Fusion-Driven Sub-critical System (FDS) is one of the Chinese programs to be further developed for fusion application. Its Dual-cooled Waste Transmutation Blanket (DWTB), as one the most important part of the FDS ...The Fusion-Driven Sub-critical System (FDS) is one of the Chinese programs to be further developed for fusion application. Its Dual-cooled Waste Transmutation Blanket (DWTB), as one the most important part of the FDS is cooled by helium and liquid metal, and have the features of safety, tritium self-sustaining, high efficiency and feasibility. Its conceptual design has been finished. This paper is mainly involved with the basic structure design and thermal-hydraulics analysis of DWTB. On the basis of a three-dimensional (3-D) model of radial-toroidal sections of the segment box, thermal temperature gradients and structure analysis made with a comprehensive finite element method (FEM) have been performed with the computer code ANSYS5.7 and computational fluid dynamic finite element codes. The analysis refers to the steady-state operating condition of an outboard blanket segment. Furthermore, the mechanical loads due to coolant pressure in normal operating conditions have been also taken into account. All the above loads have been combined as an input for a FEM stress analysis and the resulting stress distribution has been evaluated. Finally, the structure design and Pb-17Li flow velocity has been optimized according to the calculations and analysis.展开更多
基金financially supported by the National Natural Science Foundation of China (Grant No.51802025)the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No.2020JQ-384)。
文摘Different bilayer structures of HfO_(x)/Ti(TiO_(x)) are designed for hafnium-based memory to investigate the switching characteristics. The chemical states in the films and near the interface are characterized by x-ray photoelectron spectroscopy,and the oxygen vacancies are analyzed. Highly improved on/off ratio(~104) and much uniform switching parameters are observed for bilayer structures compared to single layer HfO_(x) sample, which can be attributed to the modulation of oxygen vacancies at the interface and better control of the growth of filaments. Furthermore, the reliability of the prepared samples is investigated. The carrier conduction behaviors of HfO_(x)-based samples can be attributed to the trapping and de-trapping process of oxygen vacancies and a filamentary model is proposed. In addition, the rupture of filaments during the reset process for the bilayer structures occur at the weak points near the interface by the recovery of oxygen vacancies accompanied by the variation of barrier height. The re-formation of fixed filaments due to the residual filaments as lightning rods results in the better switching performance of the bilayer structure.
文摘Taking a microwave product as an example, a system of integrated assembly structure design is presented. Getting design constraints from the upstream design section through product data management(PDM), the system generates the assembly scheme using the case? based method, then assigns the design requirements into each component of the assembly. The detail design for each component can be performed under these design constraints. In order to practise concurrent design, the system sends the final design result to the upstream section and downstream section through PDM to achieve information sharing and integration.
基金supported financially by the National Key R&D Program of China (Nos. 2018YFA0208501 and 2018YFA0703200)the National Natural Science Foundation of China (NSFC, Nos. 52103236, 91963212, 21875260)Beijing National Laboratory for Molecular Sciences (No. BNLMSCXXM-202005)。
文摘Multifunctional photodetectors boost the development of traditional optical communication technology and emerging artificial intelligence fields, such as robotics and autonomous driving. However, the current implementation of multifunctional detectors is based on the physical combination of optical lenses, gratings, and multiple photodetectors, the large size and its complex structure hinder the miniaturization, lightweight, and integration of devices. In contrast, perovskite materials have achieved remarkable progress in the field of multifunctional photodetectors due to their diverse crystal structures, simple morphology manipulation, and excellent optoelectronic properties. In this review, we first overview the crystal structures and morphology manipulation techniques of perovskite materials and then summarize the working mechanism and performance parameters of multifunctional photodetectors. Furthermore, the fabrication strategies of multifunctional perovskite photodetectors and their advancements are highlighted, including polarized light detection, spectral detection, angle-sensing detection, and selfpowered detection. Finally, the existing problems of multifunctional detectors and the perspectives of their future development are presented.
基金financially supported by the National Natural Science Foundation of China (Grants Nos. 52064013, 52064014, 52072323 and 52122211)the “Double-First Class” Foundation of Materials and Intelligent Manufacturing Discipline of Xiamen University。
文摘Aqueous zinc ion batteries(AZIBs) demonstrate tremendous competitiveness and application prospects because of their abundant resources,low cost, high safety, and environmental friendliness. Although the advanced electrochemical energy storage systems based on zinc ion batteries have been greatly developed, many severe problems associated with Zn anode impede its practical application, such as the dendrite formation,hydrogen evolution, corrosion and passivation phenomenon. To address these drawbacks, electrolytes, separators, zinc alloys, interfacial modification and structural design of Zn anode have been employed at present by scientists. Among them, the structural design for zinc anode is relatively mature, which is generally believed to enhance the electroactive surface area of zinc anode, reduce local current density, and promote the uniform distribution of zinc ions on the surface of anode. In order to explore new research directions, it is crucial to systematically summarize the structural design of anode materials. Herein, this review focuses on the challenges in Zn anode, modification strategies and the three-dimensional(3D) structure design of substrate materials for Zn anode including carbon substrate materials, metal substrate materials and other substrate materials. Finally, future directions and perspectives about the Zn anode are presented for developing high-performance AZIBs.
基金financially supported by the National Natural Science Foundation of China(No.51933007,No.51673123 and No.22005346)the National Key R&D Program of China(No.2017YFE0111500)+1 种基金the State Key Laboratory of Polymer Materials Engineering(Grant No.:sklpme2020-1-02)Financial support provided by the Fundamental Research Funds for the Central Universities(No.YJ202118)。
文摘Rational architecture design has turned out to be an effective strategy in improving the electrochemical performance of electrode materials for batteries.However,an elaborate structure that could simultaneously endow active materials with promoted reaction reversibility,accelerated kinetic and restricted volume change still remains a huge challenge.Herein,a novel chemical interaction motivated structure design strategy has been proposed,and a chemically bonded Co(CO_(3))_(0.5)OH·0.11 H_(2)O@MXene(CoCH@MXene)layered-composite was fabricated for the first time.In such a composite,the chemical interaction between Co^(2+)and MXene drives the growth of smaller-sized CoCH crystals and the subsequent formation of interwoven CoCH wires sandwiched in-between MXene nanosheets.This unique layered structure not only encourages charge transfer for faster reaction dynamics,but buffers the volume change of CoCH during lithiation-delithiation process,owing to the confined crystal growth between conductive MXene layers with the help of chemical bonding.Besides,the sandwiched interwoven CoCH wires also prevent the stacking of MXene layers,further conducive to the electrochemical performance of the composite.As a result,the as-prepared CoCH@MXene anode demonstrates a high reversible capacity(903.1 mAh g^(-1)at 100 mA g^(-1))and excellent cycling stability(maintains 733.6 mAh g^(-1)at1000 mA g^(-1)after 500 cycles)for lithium ion batteries.This work highlights a novel concept of layerby-layer chemical interaction motivated architecture design for futuristic high performance electrode materials in energy storage systems.
文摘The vacuum vessel of the HT-7U superconducting tokamak will be a fully-welded structure with a double-wall. The space between the double-wall will be filled with borated water for neutron shielding. Non-circular cross-section is designed for plasma elongating. Horizontal and vertical ports are designed for diagnosing, vacuum pumping, plasma heating and plasma current driving, etc. The vacuum vessel consists of 16 segments. It will be baked out at 250℃ to obtain a clean wall. When the machine is in operation, both the hot wall (the wall temperature is around 100℃) and the cold wall (wall temperature is in normal equilibrium) are considered. The stress caused by thermal deformation and the electromagnetic (EM) loads caused by 1.5 MA plasma disruption in 3.5 T magnetic field have to be taken into account in the design of the HT-7U vacuum vessel Finite element method was employed for structure analysis of the vacuum vessel.
文摘In order to develop a high-voltage power supply (HVPS) with high quality parame- ters, not only its electrical circuit but also its structure should be studied in detail. In this paper, the structure design of the collector power supply for gyrotron is discussed first. Then the electri- cal field and potential simulations of its inain devices are analyzed. Finally, relevant calculations and conclusions are given.
文摘When shaped charge penetrats into concrete,crater diameter must meet certain requirements.By using theories of shaped jet formation and crater diameter growth during jet penetrating concrete,we revealed the thresholds of the velocity and diameter of jet head,and therefore obtained the related structure parameters of top liner,so that shaped charge structure was developed.We built a?60mm copper liner and a?142mm Ti-alloy liner which followed the rules of 0.6cal and 0.7cal in-crater diameter.respectively.X-ray experiment and penetration test results showed that the parameters of jet head were consistent with the results of theoretical analysis.The in-crater diameter of?60mm shaped charge reached 36 mm,and the?142mm one reached 100 mm.They both met the design requirements.
基金This work was supported by the National Natural Science Foundation of China(52203066,51973157,61904123)the Tianjin Natural Science Foundation(18JCQNJC02900)+3 种基金the National innovation and entrepreneurship training program for college students(202310058007)the Tianjin Municipal college students’innovation and entrepreneurship training program(202310058088)the Science&Technology Development Fund of Tianjin Education Commission for Higher Education(Grant No.2018KJ196)the State Key Laboratory of Membrane and Membrane Separation,Tiangong University.
文摘Lithium-sulfur battery(LSB)has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems.The widely commercial application and development of LSB is mainly hindered by serious“shuttle effect”of lithium polysulfides(Li PSs),slow reaction kinetics,notorious lithium dendrites,etc.In various structures of LSB materials,array structured materials,possessing the composition of ordered micro units with the same or similar characteristics of each unit,present excellent application potential for various secondary cells due to some merits such as immobilization of active substances,high specific surface area,appropriate pore sizes,easy modification of functional material surface,accommodated huge volume change,enough facilitated transportation for electrons/lithium ions,and special functional groups strongly adsorbing Li PSs.Thus many novel array structured materials are applied to battery for tackling thorny problems mentioned above.In this review,recent progresses and developments on array structured materials applied in LSBs including preparation ways,collaborative structural designs based on array structures,and action mechanism analyses in improving electrochemical performance and safety are summarized.Meanwhile,we also have detailed discussion for array structured materials in LSBs and constructed the structure-function relationships between array structured materials and battery performances.Lastly,some directions and prospects about preparation ways,functional modifications,and practical applications of array structured materials in LSBs are generalized.We hope the review can attract more researchers'attention and bring more studying on array structured materials for other secondary batteries including LSB.
基金National Natural Science Foundation of China(22272150,22302177)Major Program of Zhejiang Provincial Natural Science Foundation of China(LD22B030002)+2 种基金Zhejiang Provincial Ten Thousand Talent Program(2021R51009)Public Technology Application Project of Jinhua City(2022-4-067)Self Designed Scientific Research of Zhejiang Normal University(2021ZS0604)。
文摘Biomass conversion offers an efficient approach to alleviate the energy and environmental issues.Electrochemical oxidation of 5-hydroxymethylfurfural(HMF)has attracted tremendous attention in the latest few years for the mild synthesis conditions and high conversion efficiency to obtain 2,5-furan dicarboxylic acid(FDCA),but there still remain problems such as limited yield,short cycle life,and ambiguous reaction mechanism.Despite many reviews highlighting a variety of electrocatalysts for electrochemical oxidation of HMF,a detailed discussion of the structural modulation of catalyst and the underlying catalytic mechanism is still lacking.We herein provide a comprehensive summary of the recent development of electrochemical oxidation of HMF to FDCA,particularly focusing on the mechanism studies as well as the advanced strategies developed to regulate the structure and optimize the performance of the electrocatalysts,including heterointerface construction,defect engineering,single-atom engineering,and in situ reconstruction.Experimental characterization techniques and theoretical calculation methods for mechanism and active site studies are elaborated,and challenges and future directions of electrochemical oxidation of HMF are also prospected.This review will provide guidance for designing advanced catalysts and deepening the understanding of the reaction mechanism beneath electrochemical oxidation of HMF to FDCA.
基金support from the National Natural Science Foundation of China(22268025,52473083,and 22475176)Key Research and Development Program of Yunnan Province(202403AP140036)+2 种基金Natural Science Basic Research Program of Shaanxi(2024JC-TBZC-04)Applied Basic Research Program of Yunnan Province(202201AT070115 and 202201BE070001-031)supported by the Innovation Capability Support Program of Shaanxi(2024RS-CXTD-57).
文摘The microstructure design for thermal conduction pathways in polymeric electrical encapsulation materials is essential to meet the stringent requirements for efficient thermal management and thermal runaway safety in modern electronic devices.Hence,a composite with three-dimensional network(Ho/U-BNNS/WPU)is developed by simultaneously incorporating magnetically modified boron nitride nanosheets(M@BNNS)and non-magnetic organo-grafted BNNS(U-BNNS)into waterborne polyurethane(WPU)to synchronous molding under a horizontal magnetic field.The results indicate that the continuous in-plane pathways formed by M@BNNS aligned along the magnetic field direction,combined with the bridging structure established by U-BNNS,enable Ho/U-BNNS/WPU to exhibit exceptional in-plane(λ//)and through-plane thermal conductivities(λ_(⊥)).In particular,with the addition of 30 wt%M@BNNS and 5 wt%U-BNNS,theλ//andλ_(⊥)of composites reach 11.47 and 2.88 W m^(-1) K^(-1),respectively,which representing a 194.2%improvement inλ_(⊥)compared to the composites with a single orientation of M@BNNS.Meanwhile,Ho/U-BNNS/WPU exhibits distinguished thermal management capabilities as thermal interface materials for LED and chips.The composites also demonstrate excellent flame retardancy,with a peak heat release and total heat release reduced by 58.9%and 36.9%,respectively,compared to WPU.Thus,this work offers new insights into the thermally conductive structural design and efficient flame-retardant systems of polymer composites,presenting broad application potential in electronic packaging fields.
基金supported by the National Natural Science Foundation of China,China(52203066,51973157,51673148 and 51678411)the Science and Technology Plans of Tianjin,China(19PTSYJC00010)+3 种基金China Postdoctoral Science Foundation Grant,China(2019M651047)the Tianjin Research Innovation Project for Postgraduate Students,China(2020YJSB062)the Tianjin Municipal College Student’Innovation And Entrepreneurship Training Program,China(202110058052)the National Innovation and Entrepreneurship Training Program for College Students,China(202110058017)。
文摘Non-renewable fossil fuels have led to serious problems such as global warming,environmental pollution,etc.Oxygen electrocatalysis including oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)plays a central role in clean energy conversion,enabling a number of sustainable processes for future air battery technologies.Fluorine,as the most electronegative element(4.0)not only can induce more efficient regulation for the electronic structure,but also can bring more abundant defects and other novel effects in materials selection and preparation for favorable catalysis with respect to the other nonmetal elements.However,an individual and comprehensive overview of fluorine-containing functional materials for oxygen electrocatalysis field is still blank.Therefore,it is very meaningful to review the recent progresses of fluorine-containing oxygen electrocatalysts.In this review,we first systematically summarize the controllable preparation methods and their possible development directions based on fluorine-containing materials from four preparation methods.Due to the strong electron-withdrawing properties of fluorine,its control of the electronic structure can effectively enhance the oxygen electrocatalytic activity of the materials.In addition,the catalytic enhancement effect of fluorine on carbonbased materials also includes the prevent oxidation and the layer peeling,and realizes the precise atomic control.And the catalytic improvement mechanism of fluorine containing metal-based compounds also includes the hydration of metal site,the crystal transformation,and the oxygen vacancy induction.Then,based on their various dimensions(0D–3D),we also have summarized the advantages of different morphologies on oxygen electrocatalytic performances.Finally,the prospects and possible future researching direction of F-containing oxygen electrocatalysts are presented(e.g.,novel pathways,advanced methods for measurement and simulation,field assistance and multi-functions).The review is considered valuable and helpful in exploring the novel designs and mechanism analyses of advanced fluorine-containing electrocatalysts.
基金supported by the Chinese Studentship Council(Grant No.201908060224)the National Natural Science Foundation of China (Grant Nos.11872310,11972308)。
文摘In this paper,the design,manufacture and testing of an origami protective shield with a supporting frame structure are presented.It consists of an origami shield surface and a deployable supporting frame structure that needs to be portable and sufficiently stiff.First,for the design of the shield surface,a threestage origami crease pattern is developed to reduce the shield size in the folded state.The shield surface consists of several stiff modular panels and layered with flexible fabric.The modular panels are made of a multi-layer composite where a ceramic layer is made of small pieces to improve durability as those small pieces enable restriction of crack propagation.Then,the supporting frame structure is designed as a chain-of-bars structure in order to fold into a highly compact state as a bundle of bars and deploy in sequence.Thus,a feature-driven topology structural optimization method preserving component sequence is developed where the inter-dependence of sub-structures is taken into account.A bar with semi-circular ends is used as a basic design feature.The positions of the bar’s end points are treated as design variables and the width of the bars is kept constant.Then,a constraint on the total length of the chain of bars is introduced.Finally,the modular panels made of multi-layer composite and the full-scale prototype of the origami shield are fabricated and tested to verify the bullet-proof performance.
基金This work was supported by ZTE Industry⁃University⁃Institute Coopera⁃tion Funds under Grant No.IA20230614004.
文摘Wavelength selective switch(WSS)is the crucial component in the reconfigurable optical add/drop multiplexer(ROADM),which plays a pivotal role in the next-generation all-optical networks.We present a compact architecture of twin 1×40 liquid crystal on silicon(LCoS)-based WSS,which can be regarded as a 4f system in the wavelength direction and a 2f system in the switching direction.It is designed with theoretical analysis and simulation investigation.Polarization multiplexing is employed for two sources of twin WSS by polarization con-version before the common optical path.The WSS system attains a coupling efficacy exceeding 96%for 90%of the ports through simulation optimization.The 3 dB bandwidth can be achieved by more than 44 GHz at a 50 GHz grid for all 120 channels at all deflection ports.This work establishes a solid foundation for developing high-performance WSS with larger port counts.
基金Supported by China National 111 Project Under Grant No.B07109
文摘The concepts of floating structure plays a very important role in deepwater projects; and the design of the floating structure is one of the most important tasks in the project. The importance of the floating structure in offshore projects can be demonstrated in the following several areas: the substantial dynamic structure responses due to wave loading and current loading; the limited motion requirements of risers in deep water; and the increasing difficulty of installation for different components of the system. Three major technical aspects have to be considered, i.e. the strength of structure, the fatigue resistance capacity of the system, and local and global stability of the structure. This paper reviews the current design practice of floating structures, evaluates the main tasks during the design and associated major technical requirements, and addresses the major technical challenges encountered during the design. As a close-out of the paper, the authors discuss some potential future developments in the design of floating structures.
基金funded by the National Natural Science Foundation of China(Grant Nos.22279092 and 5202780089).
文摘Li-rich layered oxide(LRLO)cathodes have been regarded as promising candidates for next-generation Li-ion batteries due to their exceptionally high energy density,which combines cationic and anionic redox activities.However,continuous voltage decay during cycling remains the primary obstacle for practical applications,which has yet to be fundamentally addressed.It is widely acknowledged that voltage decay originates from the irreversible migration of transition metal ions,which usually further exacerbates structural evolution and aggravates the irreversible oxygen redox reactions.Recently,constructing O2-type structure has been considered one of the most promising approaches for inhibiting voltage decay.In this review,the relationship between voltage decay and structural evolution is systematically elucidated.Strategies to suppress voltage decay are systematically summarized.Additionally,the design of O2-type structure and the corresponding mechanism of suppressing voltage decay are comprehensively discussed.Unfortunately,the reported O2-type LRLO cathodes still exhibit partially disordered structure with extended cycles.Herein,the factors that may cause the irreversible transition metal migrations in O2-type LRLO materials are also explored,while the perspectives and challenges for designing high-performance O2-type LRLO cathodes without voltage decay are proposed.
基金JSPS-CAS Core-University Program on Basic Research of Nuclear Fusion Reactor Engineering in 2007
文摘In-vessel components are important parts of the EAST superconducting tokamak. They include the plasma facing components, passive plates, cryo-pumps, in-vessel coils, etc. The structural design, analysis and related R&D have been completed. The divertor is designed in an up-down symmetric configuration to accommodate both double null and single null plasma operation. Passive plates are used for plasma movement control. In-vessel coils are used for the active control of plasma vertical movements. Each cryo-pump can provide an approximately 45 m^3/s pumping rate at a pressure of 10^-1 Pa for particle exhaust. Analysis shows that, when a plasma current of 1 MA disrupts in 3 ms, the EM loads caused by the eddy current and the halo current in a vertical displacement event (VDE) will not generate an unacceptable stress on the divertor structure. The bolted divertor thermal structure with an active cooling system can sustain a load of 2 MW/m^2 up to a 60 s operation if the plasma facing surface temperature is limited to 1500 ℃. Thermal testing and structural optimization testing were conducted to demonstrate the analysis results.
基金the National Natural Science Foundation of China(No.21703191)Key Project of Strategic New Industry of Hunan Province(No.2016GK4005 and No.2016GK4030)Research Innovation Project for Graduate students of Hunan Province(No.CX2017B302)。
文摘Among the many strategies to fabricate the silicon/carbon composite,yolk/double-shells structure can be regarded as an effective strategy to overcome the intrinsic defects of Si-based anode materials for Li-ion batteries(LIBs).Hereon,a facile and inexpensive technology to prepare silicon/carbon composite with yolk/double-shells structure is proposed,in which the double buffering carbon shells are fabricated.The silicon/carbon nanoparticles with core-shell structure are encapsulated by SiO_(2)and external carbon layer,and it shows the yolk/double-shells structure via etching the SiO_(2)sacrificial layer.The multiply shells structure not only significantly improves the electrical conductivity of composite,but also effectively prevents the exposure of Si particles from the electrolyte composition.Meanwhile,the yolk/double-shells structure can provide enough space to accommodate the volume change of the electrode during charge/discharge process and avoid the pulverization of Si particles.Moreover,the as-prepared YDS-Si/C shows excellent performance as anode of LIBs,the reversible capacity is as high as 1066 mA h g^(-1) at the current density of 0.5 A g^(-1) after 200 cycles.At the same time,the YDS-Si/C has high capacity retention and good cyclic stability.Therefore,the unique architecture design of yolk/double-shells for Si/C composite provides an instructive exploration for the development of next generation anode materials of LIBs with high electrochemical performances and structural stability.
基金supported by the National Natural Science Foundation of China (No. 51768014).
文摘The modern transportation system is increasingly developed during recent years.It is an effective solution to set the noise barriers to reduce the traffic noise pollution caused by different kinds of transportation systems.Many deficiencies on concrete noise barriers and metal noise barriers with rivet structure can be eliminated by a new kind of noise barrier with no-riveted structure.The mechanical performance examination and acoustic performance test are conducted on the new-designed noise barrier with no-riveted structure.The results indicate that the maximum stress is 1.74 MPa and the maximum deformation is 1.04 mm with load acting on the unit plate.The noise reduction coefficient of this kind of no-riveted noise barrier unit plate is 0.75 and its noise insulation is 40 dB,which were conform to or superior to the standard requirements.Therefore,this new designed noise barrier meets the field application requirements of mechanical and acoustic performance,which demonstrates the noise barriers can be widely promoted.
基金Naional Nature Scienc Foundaion of China(No.10175067 and No.10175068)
文摘The Fusion-Driven Sub-critical System (FDS) is one of the Chinese programs to be further developed for fusion application. Its Dual-cooled Waste Transmutation Blanket (DWTB), as one the most important part of the FDS is cooled by helium and liquid metal, and have the features of safety, tritium self-sustaining, high efficiency and feasibility. Its conceptual design has been finished. This paper is mainly involved with the basic structure design and thermal-hydraulics analysis of DWTB. On the basis of a three-dimensional (3-D) model of radial-toroidal sections of the segment box, thermal temperature gradients and structure analysis made with a comprehensive finite element method (FEM) have been performed with the computer code ANSYS5.7 and computational fluid dynamic finite element codes. The analysis refers to the steady-state operating condition of an outboard blanket segment. Furthermore, the mechanical loads due to coolant pressure in normal operating conditions have been also taken into account. All the above loads have been combined as an input for a FEM stress analysis and the resulting stress distribution has been evaluated. Finally, the structure design and Pb-17Li flow velocity has been optimized according to the calculations and analysis.