Strapdown inertial navigation system(SINS) requires an initialization process that establishes the relationship between the body frame and the local geographic reference.This process,called alignment,is generally us...Strapdown inertial navigation system(SINS) requires an initialization process that establishes the relationship between the body frame and the local geographic reference.This process,called alignment,is generally used to estimate the initial attitude angles.This is possible because an accurate determination of the inertial measurement unit(IMU) motion is available based on the measurement obtained from global position system(GPS).But the update frequency of GPS is much lower than SINS.Due to the non-synchronous data streams from GPS and SINS,the initial attitude angles may not be computed accurately enough.In addition,the estimated initial attitude angles may have relatively large uncertainties that can affect the accuracy of other navigation parameters.This paper presents an effective approach of matching the velocities which are provided by GPS and SINS.In this approach,a digital high-pass filter,which implements a pre-filtering scheme of the measured signal,is used to filter the Schuler cycle of discrete velocity difference between the SINS and GPS.Simulation results show that this approach improves the accuracy greatly and makes the convergence time satisfy the required accuracy.展开更多
In inertial navigation system(INS) and global positioning system(GPS) integrated system, GPS antennas are usually not located at the same location as the inertial measurement unit(IMU) of the INS, so the lever arm eff...In inertial navigation system(INS) and global positioning system(GPS) integrated system, GPS antennas are usually not located at the same location as the inertial measurement unit(IMU) of the INS, so the lever arm effect exists, which makes the observation equation highly nonlinear. The INS/GPS integration with constant lever arm effect is studied. The position relation of IMU and GPS's antenna is represented in the earth centered earth fixed frame, while the velocity relation of these two systems is represented in local horizontal frame. Due to the small integration time interval of INS, i.e. 0.1 s in this work, the nonlinearity in the INS error equation is trivial, so the linear INS error model is constructed and addressed by Kalman filter's prediction step. On the other hand, the high nonlinearity in the observation equation due to lever arm effect is addressed by unscented Kalman filter's update step to attain higher accuracy and better applicability. Simulation is designed and the performance of the hybrid filter is validated.展开更多
基金supported by the National Natural Science Foundation of China (6083400560775001)
文摘Strapdown inertial navigation system(SINS) requires an initialization process that establishes the relationship between the body frame and the local geographic reference.This process,called alignment,is generally used to estimate the initial attitude angles.This is possible because an accurate determination of the inertial measurement unit(IMU) motion is available based on the measurement obtained from global position system(GPS).But the update frequency of GPS is much lower than SINS.Due to the non-synchronous data streams from GPS and SINS,the initial attitude angles may not be computed accurately enough.In addition,the estimated initial attitude angles may have relatively large uncertainties that can affect the accuracy of other navigation parameters.This paper presents an effective approach of matching the velocities which are provided by GPS and SINS.In this approach,a digital high-pass filter,which implements a pre-filtering scheme of the measured signal,is used to filter the Schuler cycle of discrete velocity difference between the SINS and GPS.Simulation results show that this approach improves the accuracy greatly and makes the convergence time satisfy the required accuracy.
基金Project(41374018)supported by the National Natural Science Foundation of ChinaProject(J13LN74)supported by the Shandong Province Higher Educational Science and Technology Program,China
文摘In inertial navigation system(INS) and global positioning system(GPS) integrated system, GPS antennas are usually not located at the same location as the inertial measurement unit(IMU) of the INS, so the lever arm effect exists, which makes the observation equation highly nonlinear. The INS/GPS integration with constant lever arm effect is studied. The position relation of IMU and GPS's antenna is represented in the earth centered earth fixed frame, while the velocity relation of these two systems is represented in local horizontal frame. Due to the small integration time interval of INS, i.e. 0.1 s in this work, the nonlinearity in the INS error equation is trivial, so the linear INS error model is constructed and addressed by Kalman filter's prediction step. On the other hand, the high nonlinearity in the observation equation due to lever arm effect is addressed by unscented Kalman filter's update step to attain higher accuracy and better applicability. Simulation is designed and the performance of the hybrid filter is validated.