The Stokes–Einstein–Debye(SED) relation in TIP5P water is tested with the original formula and its variants within the temperature range 240–390 K. The results indicate that although the variants explicitly break d...The Stokes–Einstein–Debye(SED) relation in TIP5P water is tested with the original formula and its variants within the temperature range 240–390 K. The results indicate that although the variants explicitly break down, the original SED relation is almost valid. Compared with the Stokes–Einstein relation, no explicit decoupling is observed in translational and rotational motion. Variation of the effective hydrodynamic radius is critical to testing the validity of the SED relation.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 12104502)the Natural Science Foundation of Sichuan Province (Grant No. 2023YFG0308)the Fundamental Research Funds for the Central Universities (Grant No. 24CAFUC03057)。
文摘The Stokes–Einstein–Debye(SED) relation in TIP5P water is tested with the original formula and its variants within the temperature range 240–390 K. The results indicate that although the variants explicitly break down, the original SED relation is almost valid. Compared with the Stokes–Einstein relation, no explicit decoupling is observed in translational and rotational motion. Variation of the effective hydrodynamic radius is critical to testing the validity of the SED relation.