In this paper,we construct a new class of efficient and high-order schemes for the Cahn-Hilliard-Navier-Stokes equations with periodic boundary conditions.These schemes are based on two types of scalar auxiliary varia...In this paper,we construct a new class of efficient and high-order schemes for the Cahn-Hilliard-Navier-Stokes equations with periodic boundary conditions.These schemes are based on two types of scalar auxiliary variable approaches.By using a new pressure correction method,the accuracy of the pressure has been greatly improved.Furthermore,one only needs to solve a series of fully decoupled linear equations with constant coefficients at each time step.In addition,we prove the unconditional energy stability of the schemes,rigorously.Finally,plenty of numerical simulations are carried out to verify the convergence rates,stability,and effectiveness of the proposed schemes numerically.展开更多
运用DSM C(D irect S im u lation M on te-C arlo)方法从分子运动论层次对大膨胀比、喉部转角为尖角的微喷管流动现象进行模拟,考察来流总压对喷管性能的影响,并与N av ier-S tokes方程运算结果、实验结果进行比较。研究表明:在模拟微...运用DSM C(D irect S im u lation M on te-C arlo)方法从分子运动论层次对大膨胀比、喉部转角为尖角的微喷管流动现象进行模拟,考察来流总压对喷管性能的影响,并与N av ier-S tokes方程运算结果、实验结果进行比较。研究表明:在模拟微型喷管的流动现象时,DSM C方法比N-S方程更加适用。展开更多
基金Supported by the Research Project Supported of Shanxi Scholarship Council of China(No.2021-029)Shanxi Provincial International Cooperation Base and Platform Project(202104041101019)Shanxi Province Natural Science Research(202203021211129)。
文摘In this paper,we construct a new class of efficient and high-order schemes for the Cahn-Hilliard-Navier-Stokes equations with periodic boundary conditions.These schemes are based on two types of scalar auxiliary variable approaches.By using a new pressure correction method,the accuracy of the pressure has been greatly improved.Furthermore,one only needs to solve a series of fully decoupled linear equations with constant coefficients at each time step.In addition,we prove the unconditional energy stability of the schemes,rigorously.Finally,plenty of numerical simulations are carried out to verify the convergence rates,stability,and effectiveness of the proposed schemes numerically.
文摘运用DSM C(D irect S im u lation M on te-C arlo)方法从分子运动论层次对大膨胀比、喉部转角为尖角的微喷管流动现象进行模拟,考察来流总压对喷管性能的影响,并与N av ier-S tokes方程运算结果、实验结果进行比较。研究表明:在模拟微型喷管的流动现象时,DSM C方法比N-S方程更加适用。