为了研究随机动能后向散射(stochastic kinetic energy backscatter,SKEB)模式扰动方法在区域集合预报中的应用效果,基于WRF模式构建了集合预报系统,针对SKEB的扰动振幅进行了敏感性试验,以了解SKEB扰动的作用特征;发展了一种多物理过...为了研究随机动能后向散射(stochastic kinetic energy backscatter,SKEB)模式扰动方法在区域集合预报中的应用效果,基于WRF模式构建了集合预报系统,针对SKEB的扰动振幅进行了敏感性试验,以了解SKEB扰动的作用特征;发展了一种多物理过程组合(multi-physics,MPHY)与SKEB相结合的混合模式扰动方法(SKEB-MPHY),并对比了SKEB、MPHY以及SKEB-MPHY的预报效果,以探索区域集合预报的最优模式扰动实现方案。试验结果表明:SKEB方法通过固定的动能耗散率计算出流函数及温度扰动,从而对模式积分产生影响,且耗散率大小与预报离差正相关,垂直结构扰动不利于预报离差的发展。SKEB、MPHY以及SKEB-MPHY方法的对比试验表明,对于高空动力场预报离散度的增长,SKEB方法比MPHY方法占优,而低层温度预报离散度增长,MPHY比SKEB扰动方法占优,混合模式扰动方法的扰动增长能力在三种方案中表现最好。集合预报检验结果表明SKEB-MPHY方法评分优于单独的SKEB和MPHY方法。降水个例分析及降水评分结果表明与单独采用MPHY方法相比,引入SKEB方法可以对大雨预报有所改进。本文研究结果表明SKEB方法及在其基础上建立的混合模式扰动方法具有较好的应用前景。展开更多
为了体现次网格尺度能量升尺度转换过程中存在的不确定性,文中将随机动能补偿(Stochastic Kinetic Energy Backscatter,SKEB)方案应用于GRAPES(Global/Regional Assimilation and Prediction System)全球集合预报系统(GRAPES-GEPS),以...为了体现次网格尺度能量升尺度转换过程中存在的不确定性,文中将随机动能补偿(Stochastic Kinetic Energy Backscatter,SKEB)方案应用于GRAPES(Global/Regional Assimilation and Prediction System)全球集合预报系统(GRAPES-GEPS),以更好地表征模式误差并且增大集合离散度。使用的SKEB方案基于具有一定时、空相关特征的随机型以及由数值扩散导致的局地动能耗散率来构造随机流函数强迫。并根据流函数与水平风速旋转分量的关系,将SKEB方案中的流函数强迫转化为适用于GRAPES全球模式的水平风速扰动。结果表明,SKEB方案的使用一方面能够提高GRAPES对大气动能谱的模拟能力;另一方面能够改善GRAPES-GEPS的集合离散度与集合平均误差的关系,增加了集合离散度,并在一定程度上减小了集合平均误差,尤其是在热带地区这种改进更为显著。而且该方案使得热带地区连续分级概率评分(CRPS评分)显著减小。就降水预报而言,从Brier评分与相对作用特征面积(AROC,Area under the Relative Operating Characteristics)的结果来看,SKEB方案有助于改善中国地区小雨[0.1 mm,10 mm)、中雨[10 mm,25 mm)与大雨[25 mm,50 mm)量级降水的概率预报技巧,而对暴雨[50 mm,∞)量级降水预报技巧影响很小(24 h降水量)。总体上,模式扰动随机动能补偿方案提高了GRAPES-GEPS的概率预报技巧。展开更多
模式中常应用水平扩散项以抑制非线性计算不稳定或阻尼虚假短波,但这会导致数值模式在截断尺度附近出现小尺度动能过度耗散。为了将被过度耗散的小尺度动能补偿回模式,将随机动能后向散射扰动方法(stochastic kinetic energy backscatte...模式中常应用水平扩散项以抑制非线性计算不稳定或阻尼虚假短波,但这会导致数值模式在截断尺度附近出现小尺度动能过度耗散。为了将被过度耗散的小尺度动能补偿回模式,将随机动能后向散射扰动方法(stochastic kinetic energy backscatter,SKEB)引入CMA-REPS区域集合预报系统。首先基于由一阶自回归随机过程在水平方向上进行球谐函数展开得到的随机型,然后计算由数值扩散方案引起的局地动能耗散率,进而构造随机流函数强迫,并将其转化为水平风速扰动,对耗散的动能进行随机补偿。开展了2018年9月、10月(选取1日、7日、13日、19日、25日)的10 d集合预报随机型时间及空间尺度敏感性试验,并对试验结果进行评估。获得如下结论:在CMA-REPS区域集合预报中应用SKEB方案,可在一定程度上补偿过度耗散的小尺度动能,进而改善了模式对实际大气动能谱的模拟能力。就集合预报技巧改进而言,SKEB方案可以显著改善区域模式水平风场U、V的离散度,同时水平风场、温度等要素连续分级概率评分(CRPS)和离群值评分均获得改善。对SKEB方案开展的6个时间尺度(失相关时间尺度τ选取1、3、6、9、12、15 h)和6个空间相关尺度(最大截断波数L_(max)选取80、100、120、160、200、240)敏感性试验结果表明,12 h失相关时间尺度和最大截断波数为240空间相关尺度的集合概率预报技巧更优。结论证明SKEB方案可以补偿在截断尺度耗散的小尺度动能,有效提高集合预报技巧。展开更多
文摘为了研究随机动能后向散射(stochastic kinetic energy backscatter,SKEB)模式扰动方法在区域集合预报中的应用效果,基于WRF模式构建了集合预报系统,针对SKEB的扰动振幅进行了敏感性试验,以了解SKEB扰动的作用特征;发展了一种多物理过程组合(multi-physics,MPHY)与SKEB相结合的混合模式扰动方法(SKEB-MPHY),并对比了SKEB、MPHY以及SKEB-MPHY的预报效果,以探索区域集合预报的最优模式扰动实现方案。试验结果表明:SKEB方法通过固定的动能耗散率计算出流函数及温度扰动,从而对模式积分产生影响,且耗散率大小与预报离差正相关,垂直结构扰动不利于预报离差的发展。SKEB、MPHY以及SKEB-MPHY方法的对比试验表明,对于高空动力场预报离散度的增长,SKEB方法比MPHY方法占优,而低层温度预报离散度增长,MPHY比SKEB扰动方法占优,混合模式扰动方法的扰动增长能力在三种方案中表现最好。集合预报检验结果表明SKEB-MPHY方法评分优于单独的SKEB和MPHY方法。降水个例分析及降水评分结果表明与单独采用MPHY方法相比,引入SKEB方法可以对大雨预报有所改进。本文研究结果表明SKEB方法及在其基础上建立的混合模式扰动方法具有较好的应用前景。